Using Machine Learning Algorithms to Predict Patient Portal Use Among Emergency Department Patients With Diabetes Mellitus

Yuan Zhou, Thomas K. Swoboda, Zehao Ye, Michael Barbaro, Jake Blalock, Danny Zheng, Hao Wang

Abstract


Background: Different machine learning (ML) technologies have been applied in healthcare systems with diverse applications. We aimed to determine the model feasibility and accuracy of predicting patient portal use among diabetic patients by using six different ML algorithms. In addition, we also compared model performance accuracy with the use of only essential variables.

Methods: This was a single-center retrospective observational study. From March 1, 2019 to February 28, 2020, we included all diabetic patients from the study emergency department (ED). The primary outcome was the status of patient portal use. A total of 18 variables consisting of patient sociodemographic characteristics, ED and clinic information, and patient medical conditions were included to predict patient portal use. Six ML algorithms (logistic regression, random forest (RF), deep forest, decision tree, multilayer perception, and support vector machine) were used for such predictions. During the initial step, ML predictions were performed with all variables. Then, the essential variables were chosen via feature selection. Patient portal use predictions were repeated with only essential variables. The performance accuracies (overall accuracy, sensitivity, specificity, and area under receiver operating characteristic curve (AUC)) of patient portal predictions were compared.

Results: A total of 77,977 unique patients were placed in our final analysis. Among them, 23.4% (18,223) patients were diabetic mellitus (DM). Patient portal use was found in 26.9% of DM patients. Overall, the accuracy of predicting patient portal use was above 80% among five out of six ML algorithms. The RF outperformed the others when all variables were used for patient portal predictions (accuracy 0.9876, sensitivity 0.9454, specificity 0.9969, and AUC 0.9712). When only eight essential variables were chosen, RF still outperformed the others (accuracy 0.9876, sensitivity 0.9374, specificity 0.9932, and AUC 0.9769).

Conclusion: It is possible to predict patient portal use outcomes when different ML algorithms are used with fair performance accuracy. However, with similar prediction accuracies, the use of feature selection techniques can improve the interpretability of the model by addressing the most relevant features.




J Clin Med Res. 2023;15(3):133-138
doi: https://doi.org/10.14740/jocmr4862

Keywords


Machine learning; Diabetic; Patient portal; Feature selection; Prediction performance

Full Text: HTML PDF Suppl1 Suppl2
 

Browse  Journals  

 

Journal of Clinical Medicine Research

Journal of Endocrinology and Metabolism

Journal of Clinical Gynecology and Obstetrics

 

World Journal of Oncology

Gastroenterology Research

Journal of Hematology

 

Journal of Medical Cases

Journal of Current Surgery

Clinical Infection and Immunity

 

Cardiology Research

World Journal of Nephrology and Urology

Cellular and Molecular Medicine Research

 

Journal of Neurology Research

International Journal of Clinical Pediatrics

 

 
       
 

Journal of Clinical Medicine Research, monthly, ISSN 1918-3003 (print), 1918-3011 (online), published by Elmer Press Inc.                     
The content of this site is intended for health care professionals.
This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted
non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons Attribution license (Attribution-NonCommercial 4.0 International CC-BY-NC 4.0)


This journal follows the International Committee of Medical Journal Editors (ICMJE) recommendations for manuscripts submitted to biomedical journals,
the Committee on Publication Ethics (COPE) guidelines, and the Principles of Transparency and Best Practice in Scholarly Publishing.

website: www.jocmr.org   editorial contact: editor@jocmr.org     elmer.editorial2@hotmail.com
Address: 9225 Leslie Street, Suite 201, Richmond Hill, Ontario, L4B 3H6, Canada

© Elmer Press Inc. All Rights Reserved.


Disclaimer: The views and opinions expressed in the published articles are those of the authors and do not necessarily reflect the views or opinions of the editors and Elmer Press Inc. This website is provided for medical research and informational purposes only and does not constitute any medical advice or professional services. The information provided in this journal should not be used for diagnosis and treatment, those seeking medical advice should always consult with a licensed physician.