Optimal Upper Limits of Plateau Pressure for Patients With Acute Respiratory Distress Syndrome During the First Seven Days: A Meta-Regression Analysis

Hideto Yasuda, Masamitsu Sanui, Tetsuro Nishimura, Tetsuro Kamo, Eishu Nango, Takayuki Abe, Rachel Roberts, Toru Takebayashi, Satoru Hashimoto, Alan Kawarai Lefor

Abstract


Background: The effects of plateau pressure during the initial days of mechanical ventilation on outcomes for patients with acute respiratory distress syndrome have not been fully examined. We conducted meta-regression analysis of plateau pressure during the first 7 days using randomized control trials to investigate the optimal upper limits of plateau pressure on different days of mechanical ventilation.

Methods: Randomized controlled trials comparing two mechanical ventilation strategies with lower and higher plateau pressures in patients with acute respiratory distress syndrome were included. Meta-regression analysis was performed to determine the association of plateau pressure with mortality on days 1, 3, and 7 of mechanical ventilation.

Results: After evaluation of 2,975 citations from a comprehensive search across electronic databases, 14 studies were included in the final qualitative analysis. A total of 4,984 patients were included in the quantitative analysis. As a result of the pairwise comparison, overall short-term mortality was significantly higher for patients with plateau pressures over 32 cm H2O during the first 3 days after intensive care unit (ICU) admission (day 1: relative risk (RR), 0.77; 95% confidence interval (CI), 0.66 - 0.89; I2 = 0%; day 3: RR, 0.76; 95% CI, 0.64 - 0.90; I2 = 0%), but not on day 7 (RR, 0.82; 95% CI, 0.65 - 1.04; I2 = 16%). Plateau pressures below 27 cm H2O and 30 cm H2O were not associated with an absolute risk reduction of short-term mortality. According to univariable meta-regression analysis, mortality was significantly associated with plateau pressure on day 1 (? = 0.01 (95% CI, 0.002 - 0.024), P = 0.02). On days 3 and 7, however, no significant difference was detected. When the cutoffs were set at 27, 30 and 32 cm H2O on day 1, which showed a significant difference, plateau pressure tended to be associated with increased mortality at pressures above the cut-off values, and there were no significant differences at pressures below the cut-off values, regardless of the cutoff used.

Conclusions: This study suggests that the optimal cut-off value for plateau pressure may be 27 cm H2O especially during the initial period of mechanical ventilation, although this association may not continue during the latter period of mechanical ventilation.




J Clin Med Res. 2021;13(1):48-63
doi: https://doi.org/10.14740/jocmr4390

Keywords


ARDS; Mechanical ventilation; Plateau pressure; Meta-regression

Full Text: HTML PDF Suppl1 Suppl2 Suppl3 Suppl4 Suppl5
 

Browse  Journals  

 

Journal of Clinical Medicine Research

Journal of Endocrinology and Metabolism

Journal of Clinical Gynecology and Obstetrics

 

World Journal of Oncology

Gastroenterology Research

Journal of Hematology

 

Journal of Medical Cases

Journal of Current Surgery

Clinical Infection and Immunity

 

Cardiology Research

World Journal of Nephrology and Urology

Cellular and Molecular Medicine Research

 

Journal of Neurology Research

International Journal of Clinical Pediatrics

 

 
       
 

Journal of Clinical Medicine Research, monthly, ISSN 1918-3003 (print), 1918-3011 (online), published by Elmer Press Inc.                     
The content of this site is intended for health care professionals.
This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted
non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons Attribution license (Attribution-NonCommercial 4.0 International CC-BY-NC 4.0)


This journal follows the International Committee of Medical Journal Editors (ICMJE) recommendations for manuscripts submitted to biomedical journals,
the Committee on Publication Ethics (COPE) guidelines, and the Principles of Transparency and Best Practice in Scholarly Publishing.

website: www.jocmr.org   editorial contact: editor@jocmr.org
Address: 9225 Leslie Street, Suite 201, Richmond Hill, Ontario, L4B 3H6, Canada

© Elmer Press Inc. All Rights Reserved.