Journal of Clinical Medicine Research, ISSN 1918-3003 print, 1918-3011 online, Open Access
Article copyright, the authors; Journal compilation copyright, J Clin Med Res and Elmer Press Inc
Journal website https://www.jocmr.org

Review

Volume 13, Number 5, May 2021, pages 253-257


Calcium: More Than Bone? Implications for Clinical Practice and Theory

Figure

Figure 1.
Figure 1. Physiologic mechanisms of calcium homeostasis. Calcium is raised via the release of parathyroid hormone (PTH). PTH secretion increases Ca2+ absorption in the kidneys and small intestine and decreases excretion through dermal and fecal routes. PTH enhances the formation of calcitriol in the kidneys in concert with insulin-like growth factor 1. Bone resorption is increased. Calcium is lowered via calcitonin secretion from C cells of the parathyroid. Calcitonin downregulates Ca2+ absorption in the kidneys and small intestine, and increases dermal and fecal excretion of Ca2+. Bone resorption is decreased. TRP: transient receptor potential.