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Abstract

This article reviews the questions regarding the image evaluation of 
angiogeneic histological samples, particularly the ovarian epithe-
lial cancer. Review is focused on the principles of image analysis 
in the field of histology and pathology. The definition, classifica-
tion, pathogenesis and angiogenesis regulation in the ovaries are 
also briefly discussed. It is hoped that the complex image analysis 
together with the patient’s clinical parameters will allow an acquir-
ing of a clear pathogenic picture of the disease, extension of the 
differential diagnosis and become a useful tool for the evaluation 
of drug effects. The challenge of the assessment of angiogenesis 
activity is the heterogeneity of several objects: parameters derived 
from patient’s anamnesis as well as of pathology samples. The oth-
er unresolved problems are the subjectivity of the region of interest 
selection and performance of the whole slide scanning.
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Introduction: angiogenesis definition and its 
role in ovarian function and pathology

The aim of this paper is to provide the reader with a brief 
understandable description of angiogenesis research facts 
and concepts, especially the histology sample image analysis 
strategies and its problems.

Angiogenesis, the development of the new capillaries 
from the already existing vessels, is an important process of 

the normal physiologic activities such as the cyclic ovarian 
function, wound healing and embryonic growth. Another 
definition: Angiogenesisis is the stimulation of the new en-
dothelial cell growth and the new blood vessel development 
[1]. Angiogenesis was first described by Hunter in 1787  [2]. 
Despite the enormous amount of information concerning an-
giogenesis, to the best of our knowledge, there are only few 
literature sources describing the image analysis of angiogen-
esis  [3-24] and even less about this topic in the field of ovar-
ian cancer research [25-27].

Ovarian cancer is one of the major causes of female 
oncologic death worldwide (Fig. 1). It causes more than 
140,000 deaths annually in women worldwide.  About 
21,650 cases of invasive ovarian cancer resulting in 15,520 
deaths were predicted to occur in 2008 [28]. For decades, 
the classical treatment of this disease has been the platinum 
chemotherapy and surgery.  

All ovarian tumors are divided into the following cate-
gories [29]: (1) Surface derived (serous, mucinous, endome-
trioid and Brenner tumor); (2) Germ cell tumors (cystic tera-
toma, dysgerminoma, yolk sac tumor); (3) Sex-Cord derived 
(thecoma-fibroma, granulosa-thecal cell tumor, Sertoli-Ley-
dig cell and gonadoblastoma); (4) Neoplasias metastatic to 
ovary: Krukenberg tumor.

Current concepts regarding the origins and molecular 
pathology of ovarian cancer suggest that the dysfunction of 
K-ras, b-raf, BRCA1, p53 genes and several others often oc-
cur in these patients. Among the predisposing diseases are 
endometriosis, initially benign cysts and cystadenomas [30]. 

By establishing a correlation between angiogenesis and 
cancer development and progression we can arrive at a more 
complete understanding regarding angiogenesis, cancer and 
ultimately individual recurrence and survival [31].

Increased vascularity and angiogenesis occur in support 
of actively proliferating tumor cells and thus blood vessel 
parameters may have a potential application as diagnostic 
and prognostic indicators [32]. 

That is our opinion that angiogenesis activity is espe-
cially dynamic and unstable in the ovaries and it is probably 
almost impossible to estimate all the microenvironment ef-
fects influencing the angiogenesis expansion in any organ or 
tissue system. What we can see on the histological image are 
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only the tubular structures (blood and lymphatic capillaries) 
and the surrounding cells within a connective tissue matrix 
(Fig. 2). 

Angiogenesis is a key aspect of normal cyclical ovarian 
function. Follicular growth and the development of the cor-
pus luteum (CL) are dependent on the proliferation of new 
capillary vessels. The process of selection of a dominant fol-
licle in monovular species has been also associated with an-
giogenesis, as there is evidence that selected follicles possess 
more elaborate microvascular networks than other follicles. 
After blood vessel growth, the blood vessels regress, sug-
gesting the coordinated action of inducers as well as inhibi-
tors of angiogenesis in the course of the ovarian cycle [33]. 

Apparently, angiogenesis can be investigated on the 
level of the entire organism, as on the levels of an organ 
system, a separate organ, a tissue and cells. Angiogenesis 
on the histology sample section is assessed by the eye of 
the trained pathologist (manually), using the graticule, via 
Chalkey stereologic method and applying the image process-
ing software.

Angiogenesis classification

Two main types of angiogenesis have been described: 
sprouting, the expansive growth of the vascular network; 
and remodeling, the rebuild of the vessel net. It is consid-

ered that the first type predominates in malignant tumor 
growth. However, Fox and colleagues (2007) do not include 
the remodeling in classification of the angiogenesis. They 
have suggested the classification of tumor neovasculariza-
tion with 5 types. (1) Angiogenesis: the generation of new 
blood vessels from the existing vasculature; (2) Vasculogen-
esis, the de novo generation of blood vessels from endothe-
lial cell progenitors, as occurs in the embryo; (3) Vascular 
remodeling: intussusceptive vascular growth, referring to 
vascular network formation by insertion of interstitial tis-
sue columns into the vascular lumen and subsequent growth 
of these columns resulting in partitioning of the vessel lu-
men, endothelial cell division is not required for this form 
of vascular remodeling [35]; (4) Glomeruloid angiogenesis, 
which refers to the highly complex vascular aggregates that 
resemble glomeruli of the kidney, composed of a network 
of capillaries that are variably lined by basement membrane 
and pericytes; (5) Vascular mimicry defined as a complete 
capillary network composed of tumor cells themselves rather 
than vascular endothelial cells that conduct blood [36].

Vascular endothelial growth factor (VEGF)

VEGF/VPF (now termed VEGF-A) was first identified in 
1993 by Senger and colleagues in ascites fluid of tumors in 
rodents. Years later, VEGF was found in the malignant effu-

Figure 1. Graphical description of ovarian cancer epidemiology (case incidence) in Belarus, 1995, 1999, 2004. Data taken 
from reference [34].
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sions of several human tumors. VEGF is a heparin binding 
glycoprotein that occurs in at least four molecular isoforms 
as the result of alternative VEGF mRNA splicing [1].

The VEGF family is an increasingly important set of 
factors in ovarian cancer. VEGF has been established ex-
perimentally as one of the major inducers of ascites and its 
expression can be at least in part a consequence of a positive 
feedback loop where the ovarian cancer cells produce LPA, 
which in turn induces VEGF, causing ascites with high circu-
lating concentrations of LPA. Several studies demonstrated 
the importance of other members of the VEGF family, includ-
ing VEGF-C and VEGF-D, which induce de novo formation 
of lymphatic capillaries (lymphangiogenesis). These factors 
have also been shown to promote metastasis via the lym-
phatics. Further, the short isoform of the alternatively spliced 
VEGF receptor-3, the receptor tyrosine kinase receptor for 
VEGFs-C and -D, is related to development of lymph node 
metastasis in breast cancer. VEGF-C is induced by hypoxia, 
making it also likely to be involved in the development of 
ovarian cancer or the ascites of ovarian cancer. The role of 
the angiopoietins and the other VEGF family members has 
not yet been examined in detail in ovarian cancer [37]. 

VEGF receptors family is not the only molecules ex-
pressed differently in tumor and normal endothelial cells, 
and angiogenesis is not the only way of the cancer expan-
sion, however its predominant pathogenic role is clearly 

established. The mentioned molecular group includes: (1) 
VEGF receptors; (2) Integrins (Avb3, Avb5); (3) Adhesion 
molecules (E-selectin, Endoglin); (4) Glycoproteins (Pros-
tate-specific antigen); (5) Proteases.

Three main approaches to targeting angiogenesis in 
the treatment of ovarian cancer have been described. The 
first has been to target VEGF itself, the second to block the 
VEGF binding site on its cell surface receptors, and the third 
to inhibit tyrosine kinase activation and downstream signal-
ing with small molecules at the intracellular level [28].

The extensive description of ovarian cancer pathology 
and treatment is beyond the scope of the article.

Major markers of the blood vessels

The most commonly used antibodies to highlight tumor 
blood vessels are those against Factor VIII related antigen, 
CD31/PECAM-1, and CD34. Factor VIII related antigen is 
a part of the von Willebrand factor complex and plays a role 
in the coagulation cascade. The platelet endothelial cell ad-
hesion molecule CD31/PECAM-1 is a transmembrane gly-
coprotein involved in cell adhesion. CD34 is a surface gly-
coprotein of unknown function [1]. The both known blood 
vessel endothelial and lymphatic (panendothelial) markers 
are CD31, CD34, CD105, cadherin (adhesion molecules), 

Figure 2. Histology sample of epithelial ovarian cancer, lymphatic microvessel staining D2-40, podoplanin antibody, peroxidase and 
hematoxylline, magnification x200. 1, atretic follicle; 2, blood vessel; 3, corpus albicans; 4, stained lymphatic vessels.
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VEGF2, VEGF3, Tie-2/Tek (tyrosine kinase receptors), 
CCL20/MIP-3-alpha (CC-chemokine), and E9 (endothelial 
protein) [2, 38, 39], (Table 1). 

Angiogenesis regulation

The process of angiogenesis is regulated by the cytokines, 
growth factors, the interaction between the endothelial cells 
and components of the extracellular matrix and the surround-
ing cells, including macrophages, smooth muscle cells, fi-
broblasts. The initiation, further development and fading of 
the angiogenesis activity are dependent on the balance of the 
angiogenic and antiangiogenic factors in the endothelial cell 
microenvironment. Angiogenesis can be represented as the 
consequence of stages. For the malignant tumor it is a pro-
cess starting from the single dormant endothelial cell which 
can grow to the magnificent vascular network providing the 
multi faceted homeostasis. The critical moment of the latent 
endothelial cell transformation to an active dividing cell is 
called the angiogenic switch. Ovarian function is dependent 
on the establishment and continual remodeling of a complex 
vascular system. This enables the follicle and/or CL to re-
ceive the required supply of nutrients, oxygen and hormonal 
support as well as facilitating the release of steroids. More-
over, the inhibition of angiogenesis results in the attenuation 
of follicular growth, disruption of ovulation and drastic ef-
fects on the development and function of the CL. It appears 
that the production and action of vascular endothelial growth 
factor A (VEGFA) is necessary to all these stages of devel-

opment. The extensive vascularization of the CL enables it to 
receive one of the highest blood flows per unit tissue mass. 
Luteal blood flow remains at pre-ovulation levels in the col-
lapsed follicle, but thereafter gradually increases in parallel 
with increases in luteal volume and coincides with increases 
in progesterone. The controlled, physiological angiogenesis 
that accompanies folliculogenesis, ovulation and luteal de-
velopment requires the coordinated activity of multiple cell 
types and different angiogenic factors. It appears that VEG-
FA regulates angiogenesis by stimulating endothelial prolif-
eration, migration and survival and is required at all stages 
from a secondary follicle right through to the mature CL. 
However, the often overlooked FGF2 plays a more dynamic 
role and is likely to be critical during the follicle- luteal tran-
sition [40]. 

The same factors that control angiogenesis in other or-
gans also control angiogenesis in the endometrium. It is be-
lieved that VEGF by interacting with its receptor VEGFR-1 
and VEGFR-2 plays a major role in controlling endometrial 
angiogenesis. However, there is no clear cyclic pattern of 
VEGF or VEGF receptor expression as it for example oc-
curs in the ovary. Many of the other angiogenesis-regulating 
cytokines have also been detected in the endometrium in-
cluding the positive angiogenesis regulators bFGF, TGF-β, 
TNF-α, and IL-8 and the negative regulator thrombospondin 
[41].

Interestingly, the three investigated gene polymorphisms 
did not correlate with any of the investigated clinico-patho-
logical parameters. In univariate and multivariate models, 
only FIGO stage and patient’s age at diagnosis, but not any 

Endothelial marker Laboratory and clinical qualities

CD31 - commonly used
- cross-reacts with plasma cells
- frequent antigen loss occurs due to fixatives containing acetic acid
- infiltrates sometimes obscure microvessels, especially single cell  
  sprouts

CD34 - the most reproducible endothelial cell highlighter
- highlight perivascular stromal cells

CD105 - proliferation-associated and hypoxia-inducible protein
- preferentially expressed in the activated endothelial cells 
   participating in neoangiogenesis 
- undetectable or weakly expressed in vessels of normal tissues

Tie-2/Tek - endothelium-specific receptor tyrosine kinase
- identifies stromal vessels

E-9  - protein specific for activated/proliferating endothelial cells

Table 1. Panendothelial Angiogenesis Markers

Text partially derived from [2, 38]
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polymorphism or any haplotype, were correlated with pa-
tients’ overall survival. In this large multi-center study, the 
investigated VEGF gene polymorphisms were not associated 
with prognosis in patients with ovarian cancer [42].

In the normal cycling ovary of the mare the most inten-
sive expression of the angiogenic factors VEGF A, VEGF B, 
Ang1, Ang2 and their receptors VEGF-R1, VEGF-R2 and 
Tie2 can be detected in granulosa, lutein and theca interna 
cells as well as in thecal vessels during the periovulatory pe-
riod. In this context, especially VEGF A, Ang2, VEGF-R2 
and Tie2 seem to be important for angiogenesis during fol-
licular and luteal development, while Ang1 serves for vessel 
stabilization. VEGF B and VEGF-R1 are probably only of 
secondary importance. In contrast, during luteal regression 
and follicular atresia, the findings in luteal regression and 
follicular atresia show that, in the absence of VEGF A, factor 
Ang2 and its receptor Tie2 contribute substantially to vessel 
regression [43].

Angiogenesis staging

This includes: (1) existing vessel endothelial cell basal mem-
brane degradation and fragmentation influenced by the ac-
tion of metalloproteases; (2) endothelial cell migration to the 
stromal tissue and extracellular matrix proteolytic degrada-
tion; (3) endothelial cell proliferation, new capillary tube 
formation, fusion of the formed vessels and its network de-
velopment; (4) endothelial cell proliferation and migration 
suppression and fate under the influence of the angiogenic 
factors [44-47].

The concepts of the automated cancer diag-
nosis and the assessment of angiogenesis 
activity using image analysis for histological 
samples

Computers help health care professionals make robust deci-
sions in various spheres of medicine, and in the realm of pa-
thology image processing the opportunities of the software 
packages are of a special value. A perfect program should do 
anything what a human can and at the same time requires a 
minimum user intervention and conditions and performs as 
fast as possible. Unfortunately, not all the phenomena we can 
observe and investigate could be transformed in digits and 
this is the dilemma of the qualitative and quantitative analy-
sis in research. The limitation of the image analysis software 
designed for the processing of angiogenesis samples is the 
problem of estimating the hypervascular areas which could 
be relatively easily assessed by an experienced pathologist. 
Computer can tell the scientist (this is the-output) what is the 
area of pixels had ascribed to the structures defined by the 
programmer who had put the computer language code (such 

as Java, C++ or C#). More complex features of an image 
such as the fractals could also be calculated by software. The 
obtained image features can be correlated with a spectrum 
of qualitative and quantitative parameters (patients’ age, 
comorbidity, biochemical values etc) and the diagnosis pa-
rameters are derived eventually. The fact that only few con-
ducted studies have a weak statistic power, the meta-analysis 
of similar trials can serve as the reliable source of knowledge 
to make decisions about the right treatment and follow-up 
for patients. 

Good software can calculate the relationship between 
the target objects on the screen and the areas occupying the 
recognized structures. Pathologists can not estimate and 
compute the exact numerical values looking at the image, 
but they can choose the region of interest for the further 
computations. The ideal software developed to evaluate 
angiogenesis should choose the necessary regions of inter-
est on the image slide, to recognize correctly all available 
structures, but these are the unresolved questions of modern 
medical image analysis software engineering. 

The first method of the quantitative evaluation of angio-
genesis has been proposed and developed by Brem, the tar-
get of his research were the brain tumors [48]. 

At the beginning of research activities, the measure of 
the angiogenesis process activity was the vessel area, stained 
by a coloring reactive or via the immunochemical method. 
The search for the new reliable biomarkers of angiogenesis 
is ongoing, and along with this branch of investigation the 
new approaches to the angiogenesis image have been sug-
gested. Since Weidner and colleagues estimated the mi-
crovessel density in the most vascularized area (‘‘hot spot’’) 
in their pioneering work in 1991, the same technique with 
slight modifications has been used widely to assess the 
prognostic value of angiogenesis in various types of carci-
nomas. Afterwards, the Chalkey method based on Chalkey 
eyepiece graticule was introduced to provide a quicker and 
more objective procedure for measuring tumor vascularity. 
Currently, the Chalkey assay with CD34 immunostaining 
has been suggested as a standard method for angiogenesis 
quantification in solid tumor sections in an international con-
sensus report, although the basis for the consensus has been 
questioned by others.

Microvessel density assessment is the most commonly 
used technique to quantify intratumoral angiogenesis. It uses 
panendothelial immunohistochemical staining of blood mi-
crovessels, mainly with Factor VIII antigen (F. VIII Ag or 
von Willebrand’s factor), PECAM/CD31, or CD34; rarely 
with integrin v3, CD105, or type IV collagen. The first step 
in Weidner’s approach is the identification by light micros-
copy of the area of highest neovessel density, the so called 
“hot spot”, by scanning the whole tumoral section at low 
power. Then, individual microvessels are counted at a higher 
power (x200 field) in an adequate area (e.g., 0.74 mm2 per 
field using x20 objective lens and x10 ocular). Any stained 
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endothelial cell or clusters separate from adjacent vessels are 
calculated as a single microvessel, even in the absence of 
vessel lumen. Each single count is expressed as the highest 
number of microvessels identified at the hot spot. Some au-
thors use Chalkey count or computerized image analysis sys-
tems, both aimed to minimize the subjectivity in the quanti-
fication of MVD. The Chalkey count consists of applying a 
25-point eyepiece graticule on several hot spots (usually 3). 
The graticule is oriented to allow the maximum number of 
points to hit on or within the areas of stained microvessel 
profiles (Chalkey grid area: 0.196 mm2) [49]. Quantitating 
angiogenesis by the Chalkey method represents a relative 
area estimate of the vessels rather than a true vessel count. 
This has been thought to be an advantage by improving the 
objectivity of evaluation because the method abolishes one 
of the highly observer-dependent steps in microvessel den-
sity measuring: the decision whether two immunostained 
and adjacent structures were the reflection of one single 
or two separate blood vessels. Supporting this assumption, 
the Chalkey method has been shown to have less observer 
variation than estimation of microvessel density in breast 
cancer. An important observer-dependent step still remains 
in the selection of the densely vascularized areas, ‘‘vascular 
hot spots’’ for microvessel quantitation. However, the repro-
ducibility is not necessarily optimized by choosing the same 
hot spot area. It was shown that high angiogenesis measured 
by the Chalkey method predicts poor overall survival in the 
whole study group and in the advanced stage ovarian can-
cers. Researchers suggested that, in order to define the clini-
cal significance of this finding in more detail, further studies 
on other patient materials and perhaps comparison with other 
evaluation methods of angiogenesis in ovarian cancer should 
be conducted [50].

Steps of automated cancer diagnosis include: (1) Pre-
processing (noise elimination and segmentation); (2) Feature 
extraction (feature types determination and selection); (3) 
Diagnosis (development of learning algorithms and statisti-
cal tests performance) [2].

In order to obtain the data on microvessel features, digi-
tal slide undergoes several stages of the image processing 
procedures: (1) Color deconvolution; (2) Light and dark 
staining thresholding; (3) Connecting endothelial cells in 
regions; (4) Completing vessels procedure; (5) Microvessel 
analysis [51].

The features of the histopathology sample image are 
classified according to their nature into the following groups: 
(1) morphological (vessel shape, perimeter); (2) texture 
(edge smoothness, roughness, coarseness etc.); (3) fractal 
(fractal dimension and lacunarity); (4) topological (spatial 
arrangement); (5) intensity based (color brightness) [52].

The morphological approach quantifies the size and 
shape of a cell or its nucleus. The textural approach makes 
use of spatial inter-relationships for the pixels to extract 
features and quantifies properties such as the smoothness, 

regularity, and coarseness of the image. The intensity based 
approach employs the distribution of the intensity values 
of pixels to define its features. The topological approach 
quantifies the spatial distribution of the cells within a tissue. 
Although these approaches lead to promising results in au-
tomated cancer diagnosis, they suffer from one or both of 
the two problems: (1) the difficulty of determining the exact 
locations of cells/nuclei in the biopsy image or (2) the noise 
that arises from its staining process. The cell-graph approach 
relies on cluster formation in cancerous cells to define their 
distinctive features. In this method, we identify the cell clus-
ters on a tissue image as the nodes and compute the spatial 
dependency between every pair of these nodes to probabi-
listically assign the edges. Unlike the previous demonstra-
tions, the cell-graph approach makes use of the cell clusters 
instead of the individual cells. Therefore, it eliminates the 
necessity of determining the exact locations of cells/nuclei 
on a tissue image, which allows using the low-magnification 
images. Furthermore, this approach relies on the dependency 
between the cell clusters rather than the pixels themselves 
and does not directly use the pixel values in feature extrac-
tion. Because of that, it is likely immune to noise inherit in a 
biopsy image [53]. 

The term fractal (from Latin fractus - irregular, frag-
mented) applies to objects in space or fluctuations in time 
that possess a form of self-similarity and cannot be described 
within a single absolute scale of measurement. Fractals are 
recurrently irregular in space or time, with themes repeat-
ed like the layers of an onion at different levels or scales. 
Fragments of a fractal object or sequence are exact or sta-
tistical copies of the whole and can be made to match the 
whole by shifting and stretching. Sequential fractal scaling 
relationships are observed in many physiological processes. 
Spatial structures of many living systems are fractal. Fractal 
geometry has evoked a fundamentally new view of how both 
nonliving and living systems result from the coalescence of 
spontaneous self-similar fluctuations over many orders of 
time and how systems are organized into complex recursive-
ly nested patterns over multiple levels of space. The fractal 
models may be used for image segmentation, texture classifi-
cation, shape from-texture, and the estimation of 3-D rough-
ness from image data. Related algorithms and suitable pro-
cedures are already implemented in some image processing 
software. If the parameters gained by the analysis are taken 
to supply classification problems where textural information 
is to be processed, the structures under consideration do not 
necessarily have to be fractals. In cellular morphometry cells 
and nuclei can be quantitatively described by measuring 
their fractal dimension [54].

Fractal dimension is a measure of how ‘complicated’ 
a self-similar figure is. In a rough sense, it measures ‘how 
many points’ lie in a given set. Somehow, though, fractal di-
mension captures the notion of ‘how large a set is’. Fractal 
object has a property that more fine structure is revealed as 
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the object is magnified, similarly like morphological com-
plexity means that more fine structure (increased resolution 
and detail) is revealed with increasing magnification. Fractal 
dimension measures the rate of addition of structural detail 
with increasing magnification, scale or resolution. The frac-
tal dimension, therefore, serves as a quantifier of complexity. 
Fractals that have the same fractal dimension may look very 
different, they have different ‘texture’, more specifically, dif-
ferent lacunarity. Lacunarity is a counterpart to the fractal 
dimension that describes the texture of a fractal. It is strongly 
related with the size distribution of the holes on the fractal 
and with its deviation from translational invariance. Roughly 
speaking, if a fractal has large gaps or holes it has high lacu-
narity; on the other hand, if a fractal is almost translationally 
invariant it has low lacunarity. Lacunarity (from the Latin 
lacuna for lack, gap or hole) measures structural variation 
or inhomogenities that may be manifested by ‘texture’. In 
a restrictive sense it is a measure of the lack of rotational or 
translational invariance. In a more general sense, lacunarity 
is a measure of non uniformity (heterogeneity) of structure 
or the degree of structural variance within an object. Lacu-
narity is usually defined in terms of mass related distribution 
[54].

Syntactic structure analysis (SSA), a method often used 
for quantification of tissue architecture (the arrangement of 
vascular spatial positions in case of angiogenesis). This ap-
proach uses a binary representation of the centers of grav-
ity of individual vessels to construct graphs or diagrams of 
which the characteristics are applied as contextual param-
eters. Examples of such figures are the Voronoi diagram, the 
Gabriel’s graph and the minimum spanning tree, which may 
give insight into the division of the blood supply inside the 
tumor and the immediate and distant vascular neighborhood 
relationships, respectively [55].

The fractal and syntactic analysis recently showed its 
reliability for the purposes of the research field of angiogen-
esis micropathology. Several authors have described a broad 
spectrum of descriptors for this relatively novel method [55-
57]. These descriptors can provide a multi faceted compre-
hensive picture of the angiogenesis microscopic assay.

Entropy, correlation and image contrast are an image 
characteristics derived via the texture analysis. The color 
analysis, pixel color comparison, histology image texture 
analysis all have been applied in attempts to find an appro-
priate robust and reliable approach to the assessment of an-
giogenesis net [58, 59].

Color is an important factor in defining structures in 
biological science. The fields of histology and pathology 
are founded on the use of special dyes and staining proce-
dures that label cells or structures of interest with a defining 
color. Examples include the use of special stains for specific 
biochemical groups, e.g., trichrome stain for matrix and cell 
tissue, and the use of chromogenic substrates in enzyme 
linked-immunochemistry, e.g., immunoperoxidase labeling, 

and reporter enzyme constructs in transfected cells, e.g., b-
galactosidase-transfected cells. Hence color image analysis 
(CIA), in which colored objects of interest are isolated or 
segmented from surrounding structures for subsequent mea-
surement, is becoming an increasingly important tool in 
modern pathology and cell biology [60].

The methodology for MVD practical assessment is rath-
er simple. It is similar to the original Weidner`s approach 
described above. The tumor is scanned at low power (x40-
100) (center), and the three areas that contain the highest 
number of discrete microvessels are selected. The three hot 
spot areas containing the maximum number of discrete mi-
crovessels should be identified by scanning the entire tumor 
at low power (x40 and x100). This is the most subjective 
step of the procedure. It has been demonstrated that the ex-
perience of the observer determines the success of identify-
ing the relevant hot spots. Poor selection will in turn lead 
to an inability to classify patients into different prognostic 
groups. Observers spend time in a laboratory where a period 
of training can be undertaken. Ideally, comparisons between 
hot spots chosen by an experienced investigator and trainee 
should be performed and continued on different series until 
there is more than 90% agreement. Training can be com-
pleted by assessing sections from a series that already con-
tain prognostic information. Inexperienced observers tend 
to be drawn to areas with dilated vascular channels, often 
within the sclerotic body of the tumor. These central areas 
together with necrotic tumor should be ignored. Vascular lu-
mina or erythrocytes are not a requirement to be considered 
a countable vessel; indeed, many of the microvessels have 
a collapsed configuration. Although the hot spot areas can 
occur anywhere within the tumor, they are generally at the 
tumor periphery, making it important to include the normal 
tumor interface in the representative area to be assessed. 
Vessels outside the tumor margin by one x200-250 field di-
ameter and immediately adjacent to benign tissues should 
not be counted. The procedure takes 2-5 min. Once selected, 
a 25-point Chalkey point eyepiece graticule at x200-250 
should then be oriented over each hot spot region so that the 
maximum number of graticule points are on or within areas 
of highlighted vessels. Particular care should be taken in the 
occasional case (<1% breast cancers) for which an intense 
plasma cell infiltrate can mimic a hot spot and obscure the 
underlying tumor vasculature. Plasma cells can otherwise 
be disregarded on morphological grounds. The mean of the 
three Chalkey counts is then generated for each tumor and 
used for statistical analysis. The procedure takes 2-3 min. 
For the intratumoral microvessel density index, any endo-
thelial cell or endothelial cell cluster separate from adjacent 
microvessel, tumor cells, or matrix elements is considered a 
countable vessel. Those that appear to be derived from the 
same vessel if distinct should also be counted. Again, ves-
sel lumens and erythrocytes are not included in the criteria 
defining a microvessel. There is no cutoff for vessel caliber. 
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The procedure takes 3-6 min [61].
Angiogenesis measured by MVD method correlates 

with the tumor behavior. There is a vast body of facts show-
ing that the angiogenesis intensity and a higher MVD  are 
associated with the metastases development, poor progno-
sis and life longevity shortage in breast [36, 62-64], urine 
bladder [65, 66], renal cell [67] and stomach cancer patients 
[68-72]. In the area of ovarian cancer clinical investigations 
and histology sample image analysis and pathology differ-
ential diagnosis, the data on the prognostic significance and 
reliability of MVD is controversial [1, 73-77]. Bamberger 
and Perret in 2002 concluded that in contrast with the breast 
tumor evaluation, there is no clear correlation of the MVD 
parameter with an ovarian cancer patient age, tumor stage, 
growth rate, dimension, ascites; for the various histological 
subtypes of ovarian cancer, MVD is different [1]. The further 
research in this direction elucidated the similar contradictions 
[74]. It can be hypothesized that the discrepancy of various 
conclusions is explained by the heterogeneity of patients’ 
genotypes in context of the biomarker expression. Other 
reasons are the differences of micro sample images. Several 
scientists have discussed the disadvantages and limitations 
of the MVD evaluation techniques [78-80]. Brown based on 
his personal observational experience and the literature data 
of other research groups postulated that this method is not an 
appropriate one for the precise angiogenesis activity assess-
ment in large scale randomized clinical trials [80]. 

Microvascular density would be a good indicator of 
therapeutic efficacy, but it has not been as useful for efficacy 
as it has been for prognosis. Since the early studies, hundreds 
of reports have examined the prognostic value of microvas-
cular density in several forms of cancer. Nevertheless, de-
spite the initial confirmatory publications, numerous reports 
appeared in the literature that failed to show a positive as-
sociation between increasing tumor vascularity and reduced 
patient outcome, and caution as to the clinical utility of tu-
mor angiogenesis is being urged. However, many of these 
negative studies may result from significant differences in 
methodologies [2].

Quantification of tumor angiogenesis by counting mi-
crovessels in immunostained tissue sections was ranked by 
The College of American Pathologists in category III, en-
compassing ‘‘all factors which are not sufficiently studied 
to demonstrate their prognostic value’’. The issues of meth-
odological variation mentioned include: antibody selection, 
type of fixative used, methods of counting vessels, calcula-
tion of microvessel density, observer variability (especially 
of the selection of the field in which to count) and cut-off 
value for ‘increased’ vascularity [35]. Thus, the negative 
qualities of the ‘gold standard’ are the reasons for the inves-
tigation in order to find a new better approach to the stained 
capillary specimen image analysis. 

The alternative ways of the quantitative angiogenesis 
evaluation are the determination of microvessel density in 

the randomly selected areas or in an intentionally chosen 
such as the tumor tissue edges. Whether the both methods 
provide the same biologic information or one is better in 
terms of some features over another, this question is open for 
the debates. Besides the MVD density itself, there are several 
parameters which can be determined and quantified analyz-
ing the image of the angiogenesis network: mean microves-
sel surface proportions, vascular area fraction, absolute 
number of vessels, absolute microvessel number and their 
perimeter, vessel angle, length and squares of the defined 
capillary categories [10, 81, 82]. The object of the angio-
genesis measurement of the Angio quant program (software 
which is freely available for the aims of scientific research at 
www.сs.tut.fi) is the network of the joint tubular complexes. 
The software can determine the length and the size of these 
tubular complexes and the number of network connections 
(branch points) in a complex. The developers concluded that 
the distribution of the length parameter in evaluation of the 
experimental angiogenesis obeys the power law [16, 83]. 
Moreover, in his research papers, Blacher et al mentioned the 
vessel length density, in particular, radially arranged, capil-
lary fractal dimension and the mean capillary diameter as the 
evaluation characteristics [84]. 

When the MVD is calculated, the separate object stained 
for example with CD34 biomarker is registered as 1 vessel. 
It is assumed that by its nature, the immunochemical ves-
sel staining is not an ideal diagnostic technique, because its 
important drawback is the fact that the surrounding vessels 
or the cluster of them can be recognized as 1 object, which 
will seriously negatively bias the future conclusions of the 
research [85, 86].

Another interesting research field is the image densitom-
etry applying the Feulgen reaction, which have been widely 
used for the DNA analysis [87-95]. The VEGF mRNA may 
be an appropriate target of this method for the indirect evalu-
ation of the angiogenesis growth and intensity. In its initial 
formulation, the histochemical reaction developed by Robert 
Feulgen was used simply for the detection of DNA in the 
nucleus (Feulgen and Rossenbeck 1924), but since the dem-
onstration that it is both specific and stoichiometric for DNA 
it has become the most important means of staining nuclear 
DNA for densitometric quantification. The protocol has been 
modified frequently and substantially since its early develop-
ment, but the basic components have not been altered [96]. 

Spectral analysis has been applied for the image pro-
cessing derived via microscopy for several years but to our 
knowledge this modality did not gain the wide spread use for 
the angiogenesis activities investigations [97, 98]. Spectral 
methods are based on the calculation of the eigenovectors 
and eigenovalues of a matrix derived from the affinities of 
the pixels in the image [99]. According to Laitakari (Fin-
land), integrated optical density (IOD) is defined as the sum 
of individual pixel staining intensity values of the objects, 
e.g. nuclei or vessels. This is referred to later as total staining 
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intensity (TSI). Average staining intensity (ASI) is defined 
as TSI divided by the number of pixels in an object, thus be-
ing independent of object size. Accuracy, maximum 0.1µm, 
is defined as the smallest measurable unit achieved repeat-
edly from the same measurement. Sensitivity is defined as 
the minimum level of light intensity needed to separate two 
different measurements, specificity is defined as the minimal 
measurable difference between different light emissions, re-
liability is the difference when the same specimen is mea-
sured similarly on two different occasions, and repeatability 
is the difference in measurements when the same measure-
ment is repeated several times [31].

 

Conclusions

The problem of angiogenesis in medicine touches such ques-
tions as the development and the implementation of the nov-
el methods for a vascularized tissue staining, the elaboration 
of the reliable, precise and robust methods for the machine 
recognition and processing of the cell structures visualized 
on the organ tissue sections. The discovery of the new endo-
thelial biomarkers has allowed developing immunochemical 
reactives for the clear and concise vascular structures visu-
alization, and the quantitative computer-assisted analysis of 
this image provides a stable, non emotional unbiased assess-
ment, which serves as the evidence-based fundament for the 
really scientific concepts and conclusions. 

The principal problem of angiogenesis research is the 
heterogeneity of various aspects of the research spheres: the 
unique genetic package inherited to every patient creates the 
unique picture of angiogenesis network. The ovarian tumors 
are classified according to their tissue structure features and 
in order to conclude a scientifically and, in particular statis-
tically true and valid statements, it is necessary to select a 
group of patients having similar characteristics. The limita-
tions of many studies are the minor number of similar ob-
jects. These obvious rules are necessary to determine the va-
lidity of such conclusions as the role of microvessel density 
and the other features derived from the image analysis of a 
histology section.

Many pathologists prefer to use one representative sec-
tion taken from the gross tumor specimen, and this section 
is scanned, then several shots are taken (usually 3) of the 
hot spot areas. To our opinion, for the research purposes, the 
entire slide should be scanned or if the microscope has no a 
function like this, the pathologist should take as many cam-
era shots as possible to cover the significant surface of the 
sample at a various magnification rates. This method is ap-
propriate when the researchers aim to investigate the image 
objects which are not recognizable for a human eye neither 
with nor without a microscope. The disadvantage of this ap-
proach is the problem that this task is excessively time-con-
suming, and the derived slides from the whole slide surface 

might lack its representativeness and eventually be a low-
yield in terms of the useful scientific information.
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