
Articles © The authors   |   Journal compilation © J Clin Med Res and Elmer Press Inc™   |   www.jocmr.org
This article is distributed under the terms of the Creative Commons Attribution Non-Commercial 4.0 International License, which permits 

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited
391

Review J Clin Med Res. 2023;15(8-9):391-398

Beyond Human Limits: Harnessing Artificial Intelligence to 
Optimize Immunosuppression in Kidney Transplantation

Debargha Basulia, c, Sasmit Royb

Abstract

The field of kidney transplantation is being revolutionized by the inte-
gration of artificial intelligence (AI) and machine learning (ML) tech-
niques. AI equips machines with human-like cognitive abilities, while 
ML enables computers to learn from data. Challenges in transplanta-
tion, such as organ allocation and prediction of allograft function or 
rejection, can be addressed through AI-powered algorithms. These al-
gorithms can optimize immunosuppression protocols and improve pa-
tient care. This comprehensive literature review provides an overview 
of all the recent studies on the utilization of AI and ML techniques in 
the optimization of immunosuppression in kidney transplantation. By 
developing personalized and data-driven immunosuppression proto-
cols, clinicians can make informed decisions and enhance patient care. 
However, there are limitations, such as data quality, small sample sizes, 
validation, computational complexity, and interpretability of ML mod-
els. Future research should validate and refine AI models for different 
populations and treatment durations. AI and ML have the potential to 
revolutionize kidney transplantation by optimizing immunosuppression 
and improving outcomes. AI-powered algorithms enable personalized 
and data-driven immunosuppression protocols, enhancing patient care 
and decision-making. Limitations include data quality, small sample 
sizes, validation, computational complexity, and interpretability of ML 
models. Further research is needed to validate and enhance AI models 
for different populations and longer-term dosing decisions.

Keywords: Artificial intelligence; Machine learning; Kidney trans-
plant; Immunosuppression

Introduction

In the dynamic field of medicine, artificial intelligence (AI) has 

become a prominent topic of discussion, extending its influence 
on various disciplines, including transplantation. By equipping 
machines with cognitive abilities, AI has brought about a revolu-
tion in healthcare practices. AI involves the development of com-
puter systems that possess human-like cognitive abilities such as 
reasoning, problem-solving, and learning. By creating software 
and systems that mimic human intelligence, AI enables machines 
to exhibit intelligent behavior. Machine learning (ML), a subset 
of AI, focuses on developing algorithms and models that allow 
computers to learn from data without explicit programming [1]. 
ML algorithms are trained on extensive datasets, enabling them to 
recognize patterns, make predictions, and continuously enhance 
their performance. Three broad categories shape the landscape of 
ML algorithms: supervised learning, unsupervised learning, and 
reinforcement learning. These categories facilitate the decoding 
of relationships between input variables and known outputs, the 
discovery of hidden patterns in unlabeled data, and the iterative 
refinement of prediction models, respectively.

In the context of solid organ transplantation, numerous 
challenges persist throughout the transplant process. Allocating 
organs to suitable recipients, considering factors such as patient 
demographics, comorbidities, genetics, and graft quality, re-
mains a significant challenge due to the limited supply of donor 
organs. Additionally, the growing complexity of transplant can-
didates, including advanced age and associated risk factors, ne-
cessitates personalized treatment strategies that optimize immu-
nosuppressive therapy while mitigating the risks of infections, 
malignancies, and medication-induced side effects [2]. The role 
of AI on kidney transplant has been extensively reviewed re-
cently, with most of the discussion being on various aspects of 
AI in kidney transplantation, such as waitlist prioritization, do-
nor-recipient matching, rejection prediction, and post-transplant 
outcomes [1, 3]. This review article aimed to specifically delve 
into the optimization of immunosuppression - an essential com-
ponent of successful kidney transplantation.

Achieving the delicate balance between underimmuno-
suppression and overimmunosuppression is crucial in kidney 
transplantation, considering the risks of rejection, infections, 
and medication-related complications. By integrating AI-
powered algorithms, personalized and data-driven immuno-
suppression protocols can be developed, enabling clinicians to 
make informed decisions and improve patient care.

Immunosuppression Optimization by AI

Clinicians face challenges in accurately dosing immunosup-
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pressive medications due to multiple drug interactions and nar-
row therapeutic windows. Predicting the response to therapy 
can be complicated, impacting graft survival, adverse events, 
and length of hospital stay. To address these challenges, re-
searchers have employed ML modeling to improve the accu-
racy of tacrolimus dosing and other immunosuppressive drug 
dosing after renal transplant compared to clinicians’ decisions. 
ML models provide a more precise approach to dosing immu-
nosuppressive medications, aiding in personalized treatment 
for transplant patients.

Methods

We performed a comprehensive systematic review of articles fo-
cusing on the use of AI or ML on immunosuppression manage-
ment in kidney transplantation within the last decade, limiting 
our search to English language publications. We conducted our 
search across two major electronic databases, PubMed MED-
LINE and EMBASE, up to July 1, 2023. Employing a combi-
nation of relevant key terms and synonyms, including “kidney 
transplant”, “artificial intelligence”, “machine learning”, and 
“immunosuppression”, and aliases, we meticulously screened 
retrieved articles. This process began with the removal of du-
plicates, followed by independent abstract assessments by two 
authors. Discrepancies in article selection were resolved through 
consensus. Subsequently, selected articles underwent full-text 
examination to make the final inclusion decisions. Reference 
lists of included studies were also reviewed for relevant arti-
cles. In total, our systematic search identified nine studies meet-
ing our criteria, where ML protocols were employed to adjust 
conventional immunosuppressive agents in kidney transplant 
patients. These studies are detailed further, categorized by the 
specific immunosuppressant under investigation.

Tacrolimus

In a prospective study with 80 kidney transplant patients at the 
Oslo University Hospital, Storset et al [4] investigated the use of 
computerized dosing of tacrolimus in de novo renal transplant 
recipients. They compared the effectiveness of computerized 
dosing with conventional dosing by experienced transplant phy-
sicians. The results demonstrated that computerized dose indi-
vidualization significantly increased the proportion of tacrolimus 
concentrations within the target range as compared to conven-
tional dosing. The time to achieve target levels was also shorter 
in high-risk patients. Additionally, computerized dosing showed 
benefits in terms of glucose metabolism and renal function.

One of the earliest studies in this context was probably 
by McMichael et al [5], who published a paper that presents 
an evaluation of an innovative dosing system aimed at opti-
mizing FK 506 and prednisone, called the “intelligent” dos-
ing system (IDS), which was developed to standardize patient 
management and improve patient care. The algorithm utilized 
stochastic open loop control theory to optimize drug dosing 
and has been shown to accurately predict plasma levels of FK 
506. The IDS was designed to be simple and accurate, with an 

easy-to-use interface that required no previous computer ex-
perience. The system used a knowledge base containing facts 
and rules to determine the best course of action for dosing. The 
paper presented dosing examples and observed versus predict-
ed plasma levels to demonstrate the effectiveness of the IDS. 
A prospective validation study demonstrated that the model 
achieved a 95% accuracy rate in describing the correlation be-
tween FK 506 dosage and FK 506 plasma level. Furthermore, 
the study found no biases in the dosing predictions. Important-
ly, the study also confirmed that the dosing predictions made 
by the model were unbiased, indicating that the model was re-
liable in providing accurate estimations. The authors conclude 
that the IDS is a simple and accurate automated drug dosing 
program that can improve patient outcomes.

Using a dataset from the Vienna General Hospital, Seeling 
et al [6] developed a knowledge-based system for guiding tac-
rolimus therapy in kidney transplant patients. The goal of the 
study was to identify adaptation rules for tacrolimus therapy 
based on a clinical dataset and integrate them into a clinical 
decision support system. The authors utilized patient data from 
1995 to 2008 collected from the Department of Nephrology 
and Dialysis of the Vienna General Hospital. The dataset in-
cluded patient demographics, laboratory parameters, time 
since kidney transplantation, and other immunosuppressive 
drugs administered. The researchers used a regression tree to 
create homogeneous groups of data and developed semi-auto-
mated models for these groups to predict the drug concentra-
tion for the next ward round. The models were used to create 
a knowledge base that was integrated into a clinical decision 
support system for tacrolimus therapy planning to guide neph-
rologists. The paper also highlights the importance of creating 
separate knowledge bases for each hospital due to differences 
in medication methods and views.

In a study with a large Chinese cohort of renal transplant 
recipients, Tang et al [7] compared the performance of mul-
tiple linear regression (MLR) and various ML techniques in 
predicting the stable dose of tacrolimus. A total of 1,045 renal 
transplant patients were included in the study, with 80% ran-
domly selected as the derivation cohort and the remaining 20% 
as the validation cohort. ML models including artificial neural 
network (ANN), regression tree (RT), multivariate adaptive re-
gression splines (MARS), boosted regression tree (BRT), sup-
port vector regression (SVR), random forest regression (RFR), 
lasso regression (LAR), and Bayesian additive regression trees 
(BART) were compared with MLR. Among the ML models, 
the RT model performed the best in both the derivation and 
validation cohorts, showing higher prediction accuracy com-
pared to MLR. The RT model demonstrated a prediction ac-
curacy of 0.71 in the derivation cohort and 0.73 in the valida-
tion cohort. The study highlights the potential of ML models, 
particularly the regression tree model, in predicting the stable 
dose of tacrolimus in renal transplant recipients.

Thishya et al [8] explored the use of ANN and logistic 
regression (LR) models to predict the bioavailability of tacroli-
mus and the risk for post-transplant diabetes in patients with 
renal transplantation. The study investigated the role of ge-
netic polymorphisms in ABCB1 and CYP3A5 in predicting the 
bioavailability of tacrolimus. The ANN model, with five-fold 
cross-validation, demonstrated a good correlation with the ex-
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perimental data of tacrolimus bioavailability. Factors such as 
younger age, male gender, and optimal body mass index were 
associated with lower bioavailability of tacrolimus. Genetic 
polymorphisms, specifically ABCB1 1236 C>T, 2677G>T/A, 
and CYP3A53, were found to be inversely or positively as-
sociated with the bioavailability of tacrolimus. Gender bias 
was observed in association with the ABCB1 3435 C>T pol-
ymorphism. Additionally, synergistic interactions between 
CYP3A53 and ABCB1 2677 G>T/A were identified as deter-
minants of the risk for post-transplant diabetes. The LR model 
revealed an independent association of ABCB1 2677 G>T/A 
with post-transplant diabetes. The study employed multifactor 
dimensionality reduction analysis (MDR) to identify synergis-
tic interactions between CYP3A5*3 and ABCB1 2677 G>T/A 
as important factors contributing to the risk of post-transplant 
diabetes. Overall, the ANN and MDR models utilized in this 
study provide insights into the individual and synergistic ef-
fects of variables in modulating the bioavailability of tacroli-
mus and the risk for post-transplant diabetes in patients with 
renal transplantation.

Cyclosporine

In their study, Camps-Valls et al [9] investigated the use of 
neural networks to personalize the dosage of cyclosporine A 
(CyA) in kidney transplant patients. They employed differ-
ent types of neural networks, including multilayer perceptron 
(MLP), finite impulse response (FIR), and Elman recurrent 
networks. The researchers created a two-model scheme where 
the blood concentration predicted by the first model served as 
input for the dosage prediction model. They trained the models 
using data from 22 patients for training and tested them on data 
from 10 patients. The ensemble of FIR and Elman networks 
demonstrated the best performance, achieving an r value of 
0.977 in the validation set. The authors highlighted that neural 
models are suitable for this task due to their accuracy, preci-
sion, and robustness.

In another study, Goren et al [10] discusses the use of the 
adaptive-network-based fuzzy inference system (ANFIS) to 
predict CyA blood levels in renal transplantation patients. The 
model was implemented using therapeutic drug monitoring 
(TDM) data collected from 138 patients, with 20 input param-
eters including concurrent use of drugs, blood levels, sampling 
time, age, gender, and dosing intervals The results of the study 
showed that the ANFIS model produced eight rules and exhib-
ited a root mean square error (RMSE) of 0.045 with respect 
to the training data and an error of 0.057 with respect to the 
checking data in the MATLAB environment. This indicates 
that the ANFIS model was able to effectively predict CyA con-
centration in blood samples. The authors concluded that their 
model could effectively assist physicians in choosing the best 
therapeutic drug dose in the clinical setting.

Mycophenolic Acid (MPA)

Although initially marketed as a fixed-dose drug, mycophe-

nolate mofetil (MMF) faces challenges due to its pharma-
cokinetic variability, which results in different processing and 
elimination rates among individuals. Another challenge is the 
weak relationship between the dose of MMF and the expo-
sure of the body to its active form, MPA. A recent consensus 
of the international association of therapeutic drug monitoring 
and clinical toxicology [11], recommended MPA therapeutic 
drug monitoring by estimating the MPA area under the curve 
(AUC) to optimize treatment and improve patient outcomes. 
Woillard et al [12] developed a machine-learning model to ac-
curately estimate the concentration of MMF in transplant pa-
tients. The models for estimating the concentration of MMF in 
patients who have received kidney or heart transplants were 
developed using extreme gradient boosting (Xgboost R pack-
age) ML models. The models were trained on a total of 12,877 
MPA AUC from 0 to 12 h (AUC0 - 12 h) requests from 6,884 
patients sent to the Immunosuppressant Bayesian Dose Adjust-
ment expert system for AUC estimation and dose recommen-
dation based on MPA concentrations measured at least at three 
sampling times (about 20 min, 1 and 3 h after dosing). The 
data were split into a training set (75%) and a test set (25%), 
and the Xgboost models in the training set with the lowest root 
mean squared error (RMSE) in a 10-fold cross-validation ex-
periment was evaluated in the test set and in four independ-
ent full-pharmacokinetic (PK) datasets from renal or heart 
transplant recipients. The models were based on two or three 
concentrations, differences between these concentrations, rela-
tive deviations from theoretical times of sampling, presence of 
a delayed absorption peak, and five covariates (dose, type of 
transplantation, associated immunosuppressant, age, and time 
between transplantation and sampling). The authors showed 
that the model allowed for accurate estimation of the AUC of 
MPA over a 12-h period. These models can be utilized for rou-
tine exposure estimation and dose adjustment of MPA. Fur-
thermore, the researchers plan to implement these ML models 
in a dedicated web interface for convenient use.

Tolerance

Operative tolerance, a state of long-term allograft acceptance 
without continuous immunosuppression, is an important tenet 
for the success of solid organ transplantation that can help 
minimize exposure of immunosuppressive treatments. In a re-
cent study, Fu et al [13], investigated the identification of po-
tential biomarkers for allograft tolerance in kidney transplan-
tation using ML techniques. The study utilized three publicly 
available gene expression datasets from peripheral blood lym-
phocytes of 63 tolerant patients. The researchers compared 14 
different ML models to predict spontaneous kidney graft toler-
ance, and the best subset selection (BSS) regression approach 
emerged as the most powerful model. It exhibited a sensitivity 
of 91.7% and a specificity of 93.8% in the test group, as well 
as a specificity of 86.1% and a sensitivity of 80% in the valida-
tion group. Using the BSS model, a feature set comprising five 
genes (HLA-DOA, TCL1A, EBF1, CD79B, and PNOC) was 
identified as predictive of allograft tolerance. Furthermore, 
the downregulation of EBF1 was identified as an independ-
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ent predictor of graft rejection and graft loss. By employing 
a two-gene signature (EBF1 and HLA-DOA) as input to their 
classifier, the researchers achieved an AUC value of 84.4%.

Overall, this study highlights the potential of ML in un-
covering gene sets that could influence tolerance to renal al-
lografts. The identified genes, particularly EBF1, hold promise 
as novel biological targets and may guide patient selection for 
immunosuppressant withdrawal in clinical practice.

Advantages of AI-Powered Algorithms

AI and ML algorithms are promising new tools for improving 
immunosuppressive drug adjustments in kidney transplantation. 
AI-powered algorithms can consider individual patient charac-
teristics, such as age, gender, weight, genetic polymorphisms, 
and concomitant medications, to develop personalized dosing 
regimens. This can help to optimize drug efficacy and minimize 
side effects. AI algorithms can also analyze large datasets of pa-
tient data to identify patterns and relationships that may be dif-
ficult to detect by human experts. This can lead to more accurate 
and efficient drug dosing. Additionally, AI algorithms can help 
to reduce the risk of human error in drug dosing, which is es-
pecially important for complex dosing regimens or for patients 
taking multiple medications. The integration of AL/ML tech-
niques in the realm of kidney transplantation holds the promise 
of not only predicting immunosuppressive drug levels but also 
synergizing with existing quality improvement initiatives [14]. 
Finally, AI algorithms can be used to monitor patient drug levels 
and adjust dosing regimens in real-time.

Limitations

Limitations of most of the studies include data quality, small 
sample sizes, and inconsistency in the number of cases used for 
model training, which can affect generalization. Inconsistent 
data collection and classification may lead to the use of incorrect 
features and introduce bias. Prospective and external validation 
of AI models is lacking, and their improvement over traditional 
methods may be marginal in certain transplantation aspects. ML 
algorithms can be computationally complex and time-intensive. 
Interpretability of ML models is a challenge. Ensuring rigorous 
validation, considering computational resources, and assess-
ing the nature of the data and clinical questions are important. 
Fairness evaluation and integration of non-clinical variables are 
necessary for equitable systems. None of the studies conducted 
so far have been validated on geographically distant cohorts, 
and they have primarily focused on acute tacrolimus dosing. It 
remains unclear whether these approaches would be beneficial 
for longer-term dosing decisions. Further research is needed to 
determine the effectiveness of these methods in different popu-
lations and for extended treatment durations.

Conclusions

In this comprehensive review, we have examined the studies 

that specifically investigate the use of AI-based algorithms to 
predict immunosuppressive drug levels (Table 1) [4, 5, 7-10, 
12]. However, it is important to acknowledge that tailoring im-
munosuppression involves considering various factors beyond 
drug levels. Numerous studies have explored the application 
of ML techniques in optimizing donor-recipient matching, fa-
cilitating the identification and availability of potential donors, 
predicting allograft function and rejection, and assessing post-
transplant survival outcomes. Incorporating all this valuable 
information will contribute to the personalized approach to 
immunosuppression in kidney transplant patients. By leverag-
ing AI, we can enhance outcomes, provide more accurate per-
sonalized care, and shape the future of kidney transplantation. 
Further advancements and integration of AI technology are 
necessary to realize its full potential in optimizing immuno-
suppression strategies for kidney transplant patients.
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