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Abstract

Acute kidney injury (AKI) affects increasing numbers of in-hospital 
patients in Central Europe and the USA, the prognosis remains poor. 
Although substantial progress has been achieved in the identification 
of molecular/cellular processes that induce and perpetuate AKI, more 
integrated pathophysiological perspectives are missing. Metabo-
lomics enables the identification of low-molecular-weight (< 1.5 kD) 
substances from biological specimens such as certain types of fluid or 
tissue. The aim of the article was to review the literature on metabolic 
profiling in experimental AKI and to answer the question if metabo-
lomics allows the integration of distinct pathophysiological events 
such as tubulopathy and microvasculopathy in ischemic and toxic 
AKI. The following databases were searched for references: PubMed, 
Web of Science, Cochrane Library, Scopus. The period lasted from 
1940 until 2022. The following terms were utilized: “acute kidney 
injury” OR “acute renal failure” OR “AKI” AND “metabolomics” 
OR “metabolic profiling” OR “omics” AND “ischemic” OR “toxic” 
OR “drug-induced” OR “sepsis” OR “LPS” OR “cisplatin” OR “car-
diorenal” OR “CRS” AND “mouse” OR “mice” OR “murine” OR 
“rats” OR “rat”. Additional search terms were “cardiac surgery”, 
“cardiopulmonary bypass”, “pig”, “dog”, and “swine”. In total, 13 
studies were identified. Five studies were related to ischemic, seven 
studies to toxic (lipopolysaccharide (LPS), cisplatin), and one study 
to heat shock-associated AKI. Only one study, related to cisplatin-in-
duced AKI, was performed as a targeted analysis. The majority of the 
studies identified multiple metabolic deteriorations upon ischemia/

the administration of LPS or cisplatin (e.g., amino acid, glucose, li-
pid metabolism). Particularly, abnormalities in the lipid homeostasis 
were shown under almost all experimental conditions. LPS-induced 
AKI most likely depends on the alterations in the tryptophan metabo-
lism. Metabolomics studies provide a deeper understanding of patho-
physiological links between distinct processes that are responsible for 
functional impairment/structural damage in ischemic or toxic or other 
types of AKI.

Keywords: AKI; Metabolomics; KRT; Recovery of kidney function; 
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Introduction

Acute kidney injury (AKI): definition and epidemiology

AKI affects increasing numbers of hospitalized patients world-
wide. It must be diagnosed if one of the following criteria are 
fulfilled: an increase in serum creatinine of at least 0.3 mg/
dL, a 1.5-fold increase within 7 days, or a reduction in urine 
output to under 0.5 mL/kg/h for 6 h or longer [1]. These crite-
ria have been documented in the 2012 revised “KDIGO clini-
cal practice guidelines for acute kidney injury” [2]. In 2018, 
Hoste et al reported an average in-hospital AKI incidence of 
15-30% [3]. In hospitalized subjects, the overall mortality of 
the syndrome ranges from 15% to 25% [3, 4]. The chance of 
survival is significantly lower in intensive care units, where 
up to 60% of all treated subjects acquire AKI. Under these 
circumstances, AKI has been identified as an independent 
predictor of death [5]. Certain AKI etiologies are associated 
with a disproportional increase in mortality risk. For instance, 
subjects with in-hospital-acquired cardiorenal syndrome type 
3 (AKI induces secondary cardiac complications [6]) show an 
in-hospital chance of survival of only 50% [7]. The coinci-
dence of hematooncological neoplasia, chemotherapy-induced 
sepsis, and kidney replacement therapy (KRT) requiring AKI 
has been associated with a mortality probability of 100% [8]. 
Also, individual AKI episodes have been shown to substan-
tially reduce long-term (over years) survival [9], particularly in 
more severe cases (AKI “injury” or “failure” according to the 
RIFLE (risk, injury, failure, loss of kidney function and end-
stage kidney disease) classification [10]). In addition, it can no 
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longer be doubted that AKI is a potent risk factor for chronic 
kidney disease (CKD) [11]. Forni et al [12] documented a 105-
fold hazard ratio increase for CKD, if AKI requires KRT.

AKI: etiology

The AKI etiology is quite heterogeneous [13]. Historically, 
three major AKI entities have been defined: pre-, intra-, and 
postrenal AKI. Postrenal AKI, the least frequent AKI entity 
(up to 10% [14]) potentially results from obstruction of the 
ureter or bladder or urethra. Many diseases may account for 
postrenal AKI such as urolithiasis, neoplasia, or neurological 
diseases that affect the activity of smooth muscle cells in the 
ureter or bladder. In a broader sense, “prerenal” encompasses 
all situations in which the effective perfusion of renal tissue is 
diminished (ischemia) [15]. The most common causes are flu-
id/blood loss, and acute heart failure. Another cause is cardiac 
surgery-associated AKI (CSA-AKI) (the second most common 
type of AKI after septic AKI in intensive care treated patients 
[16]). It results from various factors including nephrotoxins, 
ischemia/hypoxia, mechanical trauma, systemic inflammation, 
and cardiopulmonary bypass [17].

Kidney dysfunction is potentially reversible in the early 
stages of ischemia, prolonged hypoperfusion however increas-
ingly induces structural damage such as the loss of tubular brush 
border, vacuolization, and tubular debris secondary to cell apop-
tosis/necrosis [18]. Prerenal AKI transits to intrarenal AKI. The 
so-called bilateral cortical necrosis is rarely diagnosed, occasion-
ally in septic and postpartum AKI [19]. Nevertheless, tubular 
cell necrosis may also occur in patients with drug-induced AKI. 
The term “nephrotoxic” usually summarizes kidney-related side 
effects of various types of medications. Environmental contami-
nants may also act nephrotoxic (cadmium [20], mercury [21]), 
the overall clinical relevance is nevertheless lower. Regarding 
drug-induced AKI, the following mechanisms may be involved: 
tubular cell necrosis (aminoglycosides, vancomycin) [22, 23], 
interstitial nephritis (proton pump inhibitors) [24], renal vaso-
constriction (amphotericin B) [22], tubular obstruction (sulfona-
mides) [25], and thrombotic microangiopathy (calcineurin in-
hibitors) [26]. Clinically, many patients acquire AKI for several 
reasons (e.g., sepsis with subsequent systemic vasodilation and 
septic cardiomyopathy, additional use of nephrotoxic drugs). 
Renal ischemia per se variably induces three pathophysiologi-
cal processes or responses: tubulopathy, interstitial and systemic 
inflammation, and peritubular microvasculopathy [15, 27-29]. 
Microvascular damage is not restricted to peritubular capillar-
ies but also affects glomerular function and structure [15]. In-
creased microvascular permeability causes interstitial edema 
in both the tubular and glomerular compartments. Glomerular/
mesangial fluid accumulation potentially reduces the filtration 
rate even further.

In general, the clinical course of AKI subjects encompass-
es either complete or incomplete recovery of kidney function 
(ROKF) [30]. In some individuals, ROKF does not occur at 
all. If ROKF takes longer than 7 days after an acute event, AKI 
progresses to acute kidney disease (AKD) [31]. Respective in-
dividuals are at significantly higher risk of CKD in the long-
term [11]. Also, the long-term survival probability decreases 

with increasing AKI severity. Thus, patients with so-called 
“fatal AKI (e.g., bilateral cortical necrosis [32]) show a 7-year 
survival probability that approximates the life expectancy of 
patients with end-stage kidney disease (ESKD) [9].

The “-omics”: concept

The cellular/molecular processes that induce and perpetuate 
kidney damage in ischemic and toxic AKI have intensively 
been studied in the past. However, more integrated approaches 
were missing over many years. In this regard, “-omics” studies 
potentially offer new perspectives. The overall aim of the so-
called “-omics” concept is to identify cellular/tissue response 
patterns under both physiological and pathological conditions 
in a more integrated fashion. “-Omics” are datasets on the de-
tection, quantification, and characterization of biological mol-
ecules. Omics studies allow large-scale analysis of numerous 
proteins, nucleic acids, or metabolites at the same time. Four 
major types of “-omics” have been established, genomics, 
transcriptomics, proteomics, and metabolomics [33]. Metabo-
lomics encompasses the analysis of lower molecular weight (< 
1.5 kD) substances in cells/certain types of tissue/biological 
fluids. The current review article discusses experimental data 
published so far. It particularly aimed to answer the question 
of whether metabolic profiling enables a more integrated ap-
proach to the complex pathophysiology of ischemic or toxic or 
other types of AKI.

We omit to review the history of metabolomics or the con-
siderable number of methods [33-38] that have been established 
since the first description of metabolic profiling in 1948 [39]. 
Metabolic profiling is either being performed as untargeted or 
targeted analysis [33, 40]. According to Johnson et al [41], untar-
geted or global metabolomics allows the assessment of metabo-
lites extracted from a biological sample, it can potentially reveal 
novel perturbations. Targeted metabolomics instead measures 
the concentrations of a predefined set of metabolites. Both ap-
proaches can be used for the generation of new hypotheses.

Methods

The following databases were searched for references: PubMed, 
Web of Science, Cochrane Library, and Scopus. The period lasted 
from 1940 until 2022. The following terms were utilized: “acute 
kidney injury” OR “acute renal failure” OR “AKI” AND “me-
tabolomics” OR “metabolic profiling” OR “omics” AND “is-
chemic” OR “toxic” OR “drug-induced” OR “sepsis” OR “LPS” 
OR “cisplatin” OR “cardiorenal” OR “CRS” AND “mouse” OR 
“mice” OR “murine” OR “rats” OR “rat”. Additional search 
terms were “cardiac surgery”, “cardiopulmonary bypass”, “pig”, 
“dog”, and “swine”. The flow chart (Supplemental Material 1, 
www.jocmr.org) illustrates the searching procedure.

Ischemic AKI

The first study that needs to be discussed was published more 
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than 10 years ago (Liu et al [42]). Sprague-Dawley rats were 
subjected to bilateral renal artery clamping for 45 min, either 
with or without L-carnitine pretreatment. The substance was 
used due to its known anti-oxidative properties [43]. Serum 
concentrations of creatinine and blood urea nitrogen (BUN) 
peaked in post-ischemic animals 24 h after reperfusion, an 
effect that was markedly abrogated by L-carnitine. So-called 
“high-performance liquid chromatography coupled with mass 
spectrometry” was employed for metabolic profiling, and 
analyses were performed from serum samples. Briefly, the 
concentrations of the following metabolites increased post-is-
chemia: lysophospholipids, free fatty acids, and nitrotyrosine. 
The activity of the enzyme phospholipase A2 and serum lev-
els of malondialdehyde in contrast decreased. Finally, cortical 
superoxide dismutase activity was reduced. All effects were 
diminished in L-carnitine-treated mice. The authors proposed 
alterations of lipid metabolism as key events in ischemia/rep-
erfusion-associated kidney damage.

Two years later (2014), Wei et al [44] published a manu-
script on metabolomics in murine ischemic AKI; the aim was 
a “global analysis of the metabolic changes in renal IRI”. Bi-
lateral renal ischemia was applied for 25 min, followed by 
reperfusion periods for either 2 or 48 h or 7 days. To achieve 
the goal, plasma and tissue samples from both the renal cor-
tex and the medulla were analyzed with gas chromatography/
mass spectrometry (GC/MS) and liquid chromatography/mass 
spectrometry (LC/MS). Renal ischemia significantly deterio-
rated kidney excretory function (serum creatinine and BUN 
peaked at 48 h, respectively), functional impairment was how-
ever (partly) reversible until day 7. Metabolomics identified 
404 substances from tissue samples and 293 metabolites from 
plasma. Renal ischemia reduced the plasma availability of 
several substances in a significant manner: betaine, tyrosine, 
glutamine, proline, methionine, and others. Overall, the study 
revealed significant alterations of glucose, lipid, and purine 
metabolism. There was also evidence for affected osmotic 
regulation (mannitol, arabitol, threitol, pinitol). Finally, the tis-
sue availability of certain prostaglandins was modulated. The 
reported findings were highly relevant since they indicated 
an affected energy supply (induction/perpetuation of tubu-
lar damage) and the stimulation of inflammatory processes 
(prostaglandin dysbalance). Thus, metabolomics truly helped 
to identify a “link” between hypoperfusion/ischemia and the 
hallmarks of ischemic AKI: tubulopathy, inflammation, and 
(micro)vasculopathy.

Huang et al [45] also investigated ischemic AKI but em-
ployed a unilateral approach. Only one renal artery was oc-
cluded (45 min, Fisher rats (F344)), the other organ remained 
perfused throughout. Reperfusion either lasted for 4 or 24 h. 
In addition to metabolomics, the authors also performed pro-
teomics from cortical tissue samples. The proteomic analysis 
identified 363 out of 2,798 proteins with different expressions 
in post-ischemic as compared to contralateral kidneys. The dif-
ferences were most prominent at 24 h. Ischemia particularly 
stimulated the synthesis of factors involved in stress signal-
ing (heat shock protein 70 (HSP70) and heme-oxygenase 1 
(HO-1)), coagulation, complement activity, and fatty acid me-
tabolism [45]). For metabolic profiling, the authors used the 
following methods: nuclear magnetic resonance spectroscopy 

(NMR) or gas chromatography-mass spectrometry (GCxGC-
MS). Metabolomics showed a substantial tissue increase 
of lipid metabolites such as palmitate, stearate, linoleate, 
1-monopalmitin, cholesterol, and others. The findings already 
appeared 4 h after the ischemic insult. Intrarenal glucose lev-
els were also diminished at hour 4. Another relevant observa-
tion was impaired mitochondrial function and thus adenosine 
triphosphate (ATP) production at 24 h. Comparable to the 
previous study, this investigation offers mechanistic “links” 
between ischemia and further consequences such as inflam-
mation and tubular disfunction.

Fox et al [46] utilized an experimental model of cardiore-
nal syndrome type 3. The latter has been defined as a disorder 
in which various cardiac complications may arise in response 
to AKI [2]. The authors applied bilateral renal ischemia to 8 
- 10 weeks old, male C57BL/6 mice for 22 min, respectively. 
Cardiac metabolic profiling was performed 4 and 24 h and 7 
days later. Renal ischemia significantly diminished kidney ex-
cretory function, as reflected by elevated serum creatinine (24 
h) and BUN (all times points). A total number of 124 metabo-
lites was analyzed, and the concentrations of more than 40% 
of the substances were altered post-ischemia. Particularly, 
several amino acids were depleted, and oxidative stress was 
increased. Higher oxidative stress was also found in renal tis-
sue samples. In addition, cardiac energy production processes 
were modulated, with stimulation of anaerobic ATP synthesis. 
In summary, the study confirmed experimental data from oth-
ers, that showed a dysbalanced cardiac redox system after re-
nal ischemia [47, 48]. It also confirmed the concept of cardio-
renal or reno-cardiac cross-talk in AKI, and thus the concept of 
cardiorenal syndromes in general.

A more recent study from 2022 [49] addressed a very im-
portant topic in clinical nephrology: heart surgery-associated 
AKI. The authors utilized a piglet model of cardiopulmonary 
bypass including so-called deep hypothermic circulatory arrest 
(CPB/DHCA). Targeted metabolic profiling was performed 
from kidney tissue, urine, and serum samples. Ten out of 20 
animals that received CPB/DHCA developed AKI during fol-
low-up (4 h). Tissue analysis showed dysregulated tryptophan 
and purine metabolism. Urine analysis on the other hand re-
vealed stimulation of anaerobic glycolysis. The metabolic pat-
terns in tissue and urine samples did not resemble each other. 
Although the study additionally identified serum abnormalities 
(pyroglutamic acid - stress marker), the authors concluded that 
increased urinary anaerobic glycolysis may qualify as a tool 
for early AKI recognition in CPB.

Toxic AKI

In this paragraph, we also included lipopolysaccharide (LPS)-
induced AKI models, which are commonly used to mimic mi-
croenvironmental conditions typically found in sepsis. Septic 
AKI on the other hand emerges due to various causes such as 
LPS exposure, renal malperfusion, and systemic hyperinflam-
mation [50, 51].

The first study of interest was published in 2019 [52]. 
The authors employed a pig model of AKI, initiated by the 
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administration of living Escherichia coli to induce sepsis. The 
utilization of larger vertebrate organisms (pigs as opposed 
to mice or rats) facilitated extensive hemodynamic monitor-
ing including the following outcome variables: mean arte-
rial blood pressure (MAP), systemic blood flow (QT), mean 
pulmonary arterial pressure, renal artery blood flow (QRA), 
and renal cortical blood flow (QRC). Sepsis was associated 
with lower QRA and QRC, the urine output decreased as well. 
Metabolic profiling revealed several abnormalities in kidney 
tissue, urine, and serum. Kidney tissue lactate and nicotinuric 
acid were elevated whereas the tissue concentrations of cer-
tain amino acids (e.g., valine, aspartate) and of glucose de-
creased. Serum analysis also revealed higher lactate levels, 
and glucose concentrations were diminished. Urine analysis 
showed higher levels of isovaleroglycine, aminoadipic acid, 
N-acetylglutamine, N-acetylaspartate, and ascorbic acid, 
myoinositol and phenylacetylglycine were lower in compari-
son to saline-treated controls. The concentrations of several 
metabolites in kidney tissue and urine significantly correlated 
with well-established AKI biomarkers such as neutrophile 
gelatinase-associated lipocalin (NGAL), leading to the con-
clusion that metabolomics enables the identification of novel 
AKI biomarker molecules.

A model of tubulotoxic AKI was studied by Qu et al [53]. 
Sprague-Dawley rats received intraperitoneal (i.p.) injections 
of cisplatin (either 7.5 mg/kg or 15 mg/kg), followed by urine 
and kidney tissue collection 72 h later. The authors used so-
called high-performance liquid chromatography-time-of-flight 
mass spectrometry (HPLC-TOF/MS) and included 37 distinct 
metabolites in their analyses. Ultimately, seven major meta-
bolic pathways were dysregulated (a detailed description shall 
be omitted), either involved in energy or amino acid, or lipid 
metabolism. The conclusion that respective abnormalities are 
partly responsible for increased oxidative stress and inflam-
mation was legitimate. Additional urine analyses revealed four 
candidates as potential AKI biomarkers after cisplatin expo-
sure. The study once more highlights one essential role of me-
tabolomics in experimental and clinical AKI: the “screening” 
of yet unknown pathophysiological and diagnostic pathways/
biomarkers.

An untargeted metabolomics approach was also favored 
by Gao et al [54]. The disease of interest was LPS-induced 
(multi)-organ failure. The authors used ultra-performance 
liquid chromatography/quadrupole time-of-flight mass spec-
trometry (UPLC/QTOF-MS) in rats that were intraperito-
neally injected with LPS at 10 mg/kg once. Significant tissue 
damage was observed in the liver, lungs, colon, and kidney. 
Serum analysis showed alterations in a total number of 53 
pathways with more than 120 aberrant metabolites (e.g., D-
glutamine, D-glutamate, taurine, hypotaurine, and others). It 
was once more concluded that metabolic abnormalities poten-
tially account for increased systemic inflammation and oxida-
tive stress. The final sentence in the manuscript shall be cited: 
“The differential metabolites and metabolic pathways identi-
fied in this paper should be further studied using targeted me-
tabolomics, lipidomics, and proteomics, in order to elucidate 
mechanisms and screening therapeutic targets for develop-
ing early diagnostic strategies and treatments.” The sentence 
somehow reflects the advantages but also the limitations of 

untargeted metabolomics in general. It potentially confirms 
or even modifies pathophysiological concepts of certain dis-
ease states such as AKI, but more specific conclusions often 
remain difficult.

This also applies to the next (untargeted) study, which was 
published in 2021 [55]. Once more, rats (Sprague-Dawley) 
underwent LPS treatment (i.p.), and analyses were performed 
either 2 or 6 h later. Thus, three groups (control (CT), LPS2, 
and LPS6) were defined, with significant increases in serum 
creatinine and BUN in the LPS6 group as compared to CT and 
LPS2 (P = 0.0009 and P = 0.001). In parallel, the kidney struc-
ture of both LPS2 and LPS6 mice was significantly affected 
(e.g., detachment of the brush border, epithelial cell shedding 
and, others). The detailed results will not be discussed, but 
the study ultimately revealed three key findings: LPS-induced 
stimulation of systemic aerobic and anaerobic metabolism, im-
paired oxygen supply, and abnormalities in fatty acid metabo-
lism. These events were finally proposed as responsible for the 
development of sepsis-associated AKI.

A study on targeted metabolic profiling (liquid chroma-
tography-coupled tandem mass spectrometry (LC-MS/MS)) in 
cisplatin-induced AKI was published in 2021 [56]. The par-
ticular aim was to uncover cisplatin-induced alterations in the 
tryptophan metabolism. Previous studies identified the amino 
acid and its metabolites as potential biomarkers in CKD and 
AKI [57, 58]. Therefore, the study particularly focused on 
the following metabolites: tryptophan, 5-hydroxytryptamin 
(serotonin), N-acetylserotonin, 3-hydroxyanthranilic acid 
(HAA), kynurenine (KYN), indole-3-lactic acid (ILA), indole-
3-acetamide (IAM), 5-methoxy-3-indoleacetic acid (MIAA), 
and others. Sprague-Dawley rats were intravenously injected 
with three different cisplatin doses (group “low” (L): 3.0 mg/
kg; group “middle” (M): 6.0 mg/kg; group “high” (H): 9.0 mg/
kg), and controls received saline only. Analyses of blood and 
renal tissue were performed on day 5 after drug exposure. Both 
analytes, serum creatinine, and BUN gradually increased from 
“L” to “M” to “H”. Tissue analysis was separately performed 
from cortical and medullary dissections, respectively. Cispla-
tin injection significantly affected the tryptophan metabolism 
in cortex and medulla, the medullary area however was more 
susceptible. Out of 29 studied metabolites, indoxyl sulfate ac-
cumulated in a dose-dependent manner. The functional rele-
vance of indoxyl sulfate was proven by additional experiments 
with chlormethiazole, an inhibitor of CYP2E1 (a member of 
the cytochrome P450 mixed-function oxidase system). Re-
duced hepatic indoxyl sulfate synthesis attenuated cisplatin-
induced AKI.

Several previously discussed studies identified AKI-as-
sociated dysregulation of lipid metabolism, not only in toxic 
but also in ischemic AKI. Xiong et al [59] performed their 
study in C57/BL6 mice and in Sprague-Dawley and Wistar 
rats. AKI was once more induced by i.p. injections of cisplatin 
(25 mg/kg); animals were euthanized 1, 2, and 4 days later. 
Metabolomics revealed an accumulation of triglycerides in 
renal tissue, and the findings were confirmed by oil red O 
staining. For a more detailed characterization of accumulated 
triglycerides, the authors used a mass spectrometry-based ap-
proach, therefore the investigation was ultimately a lipidom-
ics study. Further analyses focused on the so-called superfam-
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ily of uncoupling proteins (UCPs), which are involved in lipid 
metabolism. The expression of UCPs 1 - 3 was evaluated in 
renal tissue, with strong signals for UCPs 1 and 2 under nor-
mal conditions (mice and rats). UCP 3 in contrast was hardly 
detectable at all. AKI induced a decrease in intrarenal UCP 
1, and the loss was correlated with AKI severity. Adenovi-
rus-based UCP 1 expression in kidneys of cisplatin-treated 
mice attenuated three outcome variables: serum creatinine 
decreased, tissue damage was reduced, and lipid accumula-
tion was diminished. Finally, the authors showed a link be-
tween UCP 1 activity and the AMPK/ULK1/autophagy path-
way. The study impressively showed impaired intrarenal lipid 
clearance, most likely resulting from reduced UCP 1 activity 
and impaired autophagy.

The central role of certain lipid components in the patho-
genesis of cisplatin-induced AKI was also documented by 
Song et al [60]. The study aimed to identify the mechanisms 
by which the substance astragaloside IV (AS IV), an active 
compound of the traditional Chinese herb Astragalus mem-
branaceus, may attenuate the effects of cisplatin.

Other Types of AKI

Xue et al [61] published an article on heat stroke (HS)-related 

AKI in 2021. HS potentially induces a systemic inflammatory 
response syndrome with or without AKI. According to Ren et 
al [62], two types of HS must be distinguished, exertional HS 
(EHS) and non-exertional HS (NEHS). HS mainly evolves 
in younger and physically active subjects, NEHS in contrast 
affects older individuals with a higher degree of cumulative 
morbidity. The authors established a murine HS model by 
increasing the animals’ body temperature to 41 °C. The final 
temperature was maintained only shortly, but serum creatinine 
significantly increased in HS as compared to control animals. 
Interestingly, HS mice showed an almost generalized distribu-
tion pattern of 18-fluorodeoxyglucose (18FDG) (analyzed by 
micro-positron emission tomography/computed tomography 
scanning). Immunoblot analysis revealed higher abundances 
of high-mobility-group-box protein 1 (HMGB1) and receptor 
for advanced glycation end products (RAGE) in renal tissue 
specimens from HS animals. Finally, liquid chromatography-
mass spectrometry showed an enrichment of unsaturated fatty 
acids. The authors concluded a key role for HMGB1/RAGE 
and unsaturated fatty acids in AKI induction post-HS.

Figure 1 summarizes metabolomics-derived findings in 
experimental AKI. The figure hardly differentiates between 
specific areas within the kidney but is intended to illustrate 
metabolic alterations that occur in ischemic/toxic/other types 
of AKI in a more general manner.

Figure 1. Metabolomics-derived findings in experimental AKI. Ischemia induces multiple deteriorations of lipid, glucose, and en-
ergy metabolism. In addition, the complement activity increases, coagulation pathways are activated, and prostaglandin synthe-
sis is stimulated. These events, in conjunction, induce and perpetuate tubular cell dysfunction/damage, interstitial inflammation, 
and microvasculopathy. Under experimental conditions, both LPS and cisplatin also impair lipid and energy metabolism. Cisplatin 
particularly modulates the tryptophan pathway, most likely a key mechanism in cisplatin-induced AKI. LPS: lipopolysaccharide; 
AKI: acute kidney injury; ATP: adenosine triphosphate.
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Table 1 [42, 44-46, 49, 52-56, 59, 61] summarizes all stud-
ies discussed in the text, including reference, year, design, and 
essential findings.

Conclusions

Will metabolomics studies provide a deeper understanding of 
pathophysiological processes that are responsible for func-

tional impairment/structural damage in ischemic or toxic or 
other types of AKI? In our opinion, metabolic profiling offers 
valuable information in this respect. Several studies identified 
abnormalities in amino acid, glucose, and lipid metabolism. 
Particularly the role of the latter may not be underestimated, as 
shown by the study of Xiong et al [59]. One investigation even 
found impaired energy and prostaglandin metabolism [44] in 
response to ischemia, both in conjunction, potentially induce 
tubular dysfunction/damage and stimulated inflammation.

Table 1.  Summary of All Experimental Studies Discussed in the Text

Reference Design Outcome/conclusion

Ischemic AKI

  Liu et al, 2012 [42] Bilateral renal ischemia (45 min) in 
Sprague-Dawley rats, L-carnitine 
pretreatment in one group

Increase of serum lysophospholipids and free fatty 
acids, decreased activity of serum phospholipase A2/
ischemia-associated dysregulation of lipid metabolism

  Wei et al, 2014 [44] Bilateral renal ischemia in mice 
(25 min), analyzes at 2 or 48 h 
or at 7 days after reperfusion

Alterations in glucose, lipid, and purine 
metabolism/identification of candidates involved 
in energy depletion and inflammation

  Huang et al, 2018 [45] Unilateral renal ischemia 
in rats (45 min)

Increased availability of stress signaling proteins 
(proteomics analysis), increase of cortical lipid 
metabolites, accompanied by lower tissue glucose levels

  Fox et al, 2019 [46] Experimental cardiorenal syndrome 
type 3 (6) in mice (bilateral 
renal ischemia for 22 min)

Intrarenal amino acid depletion and oxidative stress, 
intracardiac stimulation of anaerobic ATP synthesis/
experimental confirmation of reno-cardiac cross-talk in AKI

  Davidson et al, 2022 [49] Cardiopulmonary bypass including 
so-called deep hypothermic circulatory 
arrest (CPB/DHCA) in piglets

Stimulated anaerobic glycolysis in AKI piglets/anaerobic 
glycolysis as potential biomarker of early AKI in CPB

Toxic AKI

  Izquierdo-Garcia et al, 2019 [52] Living Escherichia coli for 
sepsis induction in pigs

Multiple metabolic abnormalities in kidney tissue, 
serum, and urine, correlations between certain urine 
metabolites and established AKI biomarkers/metabolomics 
help to identify novel AKI biomarker molecules

  Qu et al, 2020 [53] Intraperitoneal cisplatin injections 
(Sprague-Dawley rats), urine 
and renal tissue analyzes

Dysregulation of tissue amino acid and lipid 
metabolism; additional identification of AKI 
biomarker candidates in urine samples

  Gao et al, 2021 [54] LPS-induced multiorgan failure in rats Significant tissue damage in liver, lungs, colon, and 
kidney, alteration of more than 50 metabolic pathways 
upon LPS administration/conclusion rather vague

  Ping et al, 2021 [55] LPS treatment of Sprague-Dawley rats Stimulation of aerobic and anaerobic metabolism, impaired 
oxygen supply, abnormalities in fatty acid metabolism/
alterations proposed as key events in sepsis-associated AKI

  Tan et al, 2021 [56] Cisplatin-induced AKI in Sprague-
Dawley rats, targeted analysis 
of the tryptophan metabolism

Identification of indoxyl sulfate as key regulator 
of tissue damage in cisplatin-induced AKI

  Xiong et al, 2021 [59] Cisplatin-induced AKI in Sprague-
Dawley and Wistar rats

Intrarenal uncoupling protein (UCP) 1 
inhibits intrarenal lipid clearance

Other types of AKI

  Xue et al, 2021 [61] Murine model of heat 
stroke-related AKI

Intrarenal enrichment of unsaturated fatty acids

CPB/DHCA: cardiopulmonary bypass including so-called deep hypothermic circulatory arrest; AKI: acute kidney injury; ATP: adenosine triphosphate; 
LPS: lipopolysaccharide.
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