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Abstract

Carbapenem resistance, an emerging global health problem, compro-
mises the treatment of infections caused by nosocomial pathogens. 
Preclinical and clinical trials demonstrate that a new generation of 
carbapenemases inhibitors, together with the recently approved avi-
bactam, relebactam and vaborbactam, would address this resistance. 
Our review summarizes the latest developments related to carbap-
enemase inhibitors synthesized to date, as well as their spectrum of 
activity and their current stage of development. A particular focus will 
be on β-lactam/β-lactamase inhibitor combinations that could poten-
tially be used to treat infections caused by carbapenemase-producer 
pathogens. These new combinations mark a critical step forward the 
fight against antimicrobial resistance.
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Introduction

Carbapenem resistance has been declared a worldwide prob-
lem as per the 2017 World Health Organization [1]. To ad-
dress this global pandemic crisis, it is pivotal to understand 
the mechanism of resistance and better classify the responsible 

pathogens. The main mechanism of resistance is the hydrolysis 
of carbapenems via the production of carbapenem-hydrolyzing 
enzymes [2]. β-lactamase enzymes are classified by the Am-
bler Classification System into four groups (A, B, C, and D) 
based on their central catalytic domain and substrate prefer-
ence [3]. In general, class A, B and D enzymes utilize car-
bapenemases for resistance while class C enzymes mainly hy-
drolyze cephalosporins. Moreover, class A, C and D enzymes 
have serine in their central catalytic domain, while class B 
enzymes have zinc and are considered metallo-β-lactamases 
(MBLs) [4] (Table 1).

Class A enzymes can be chromosomally encoded (SME, 
NmcA, SFC-1, BIC-1, PenA, FPH-1, SHV-38) or plasmid-en-
coded (KPC, GES, FRI-1) [5]. Chromosomally encoded class 
A carbapenemases are rare and are found in a limited number 
of Serratia and Enterobacter isolates [6-8]. However, plasmid-
encoded class A carbapenemases are widely spread and have 
been isolated predominantly in Klebsiella pneumoniae [9, 10]. 
Specifically, the KPC family from class A has enzymes that 
can hydrolyze a huge variety of β-lactams substrates, which 
gives these carbapenemases the power to spread and develop 
resistance, making them one of the most difficult carbapen-
emases to control [11].

Class B carbapenemases are distinguished by having zinc 
ions on their active site. These ions interact with the β-lactams 
leading to their hydrolysis. The mechanism of action of these 
MBLs facilitates their inhibition by metal ion chelators, such 
as EDTA, but not by the regularly used lactam inhibitors. They 
are divided into chromosomal (CcrA, CphA, L1) and plasmid-
encoded (VIM, IMP, GIM, SIM) variants. Chromosomally 
encoded class B carbapenemases are mainly found in oppor-
tunistic pathogens and are therefore not common in nosoco-
mial bacteria. Since the spread of chromosomal MBLs is di-
rectly dependent on the prevalence of the offending pathogen, 
they are relatively rarer to detect [12, 13]. On the contrary, the 
plasmid-encoded class B carbapenemases are transferrable, so 
their prevalence has increased over the years, with some (VIM, 
IMP) even spreading beyond their countries of origin. They 
are found predominantly in Pseudomonas aeruginosa, Acine-
tobacter baumannii and Enterobacterales [11, 14].

Class C enzymes, as mentioned earlier, are known to hy-
drolyze mainly cephalosporins. Recently five enzymes in this 
group (ACT-1, DHA-1, CMY-2, CMY-10, and ADC-68) were 
found to exhibit carbapenem catalytic activity as well, impos-
ing further therapeutic threat against the use of multiple anti-
biotic classes [15].

Class D enzymes, also called OXAs (oxacillinases) due 
to their ability to hydrolyze isoxazolyl penicillin oxacillin, 
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are widely found in gram-negative bacteria. Some of these 
enzymes are found to possess carbapenemase activity, thus 
given the name carbapenem-hydrolyzing class D β-lactamases 
(CHDLs). The majority of the clinically significant CHDLs 
(OXA-23, OXA-24/40, OXA-51, OXA-58, and OXA-143) 
are found in the A. baumannii strains. Of those, OXA-51 is the 
most widespread. OXA-48 is also found in K. pneumonia and 
less often in some members of the Enterobacteriaceae family 
[16-22].

Carbapenemase Inhibitors

Diazabicyclooctanes (DBOs) derived inhibitors

DBOs were thought to be potential β-lactam mimics; however, 
early synthetic DBOs had no antimicrobial uses [23, 24]. Nev-
ertheless, continuing efforts in their development had made 
them potentially potent inhibitors of β-lactamases. DBOs con-
sist of a five-membered ring with an amide group that car-
bamylates and subsequently deactivates the serine residues of 
class A and class C enzymes. Additionally, it has shown unpre-
dictable activity against class D enzymes and no effect on class 
B metalloenzymes [24].

Avibactam

Up until 2015, antibiotics with extensive side effect profile, 
such as aminoglycosides and colistin, have been considered 
the optimal modality for managing carbapenem-resistant En-
terobacteriaceae (CRE). In 2015, the Food and Drug Admin-
istration (FDA) approved the use of avibactam-ceftazidime, 
a combination of a β-lactam/β-lactamase inhibitor (BLI) [25, 
26]. It has a broader spectrum of activity when compared to 
current BLIs (clavulanic acid, tazobactam, and sulbactam) 
[27]. Moreover, when paired with ceftazidime, a third-gen-
eration cephalosporin, it has restored the antimicrobial activ-
ity against a wide range of class A and C β-lactamases, along 
with K. pneumoniae carbapenemase (KPC) carbapenemases, 
extended spectrum beta-lactamases (ESBLs), and AmpC en-
zymes. A recent study by Niu et al proved that aztreonam-avi-
bactam combination has an activity against MBL-producing 
K. pneumoniae, a matter which has been challenging for many 
antimicrobials [28]. Nevertheless, ceftazidime alone stands 

effective against OXA-48-like carbapenemases in addition 
to its good antipseudomonal activity. Together when com-
bined they offer extensive action against β-lactamase produc-
ing Enterobacteriaceae as well as against P. aeruginosa with 
derepressed AmpC [29]. The combination of aztreonam in 
combination with ceftazidime-avibactam has provided an up-
grade on the individual ability of aztreonam and ceftazidime-
avibactam individually to fight against serine-beta-lactamase 
(SBL) and MBL-producing Enterobacterales (P. aeruginosa). 
In a study designed to evaluate the bactericidal activity of 
different antibiotic combinations against SBL and MBL-pro-
ducing P. aeruginosa isolates, there was a significant increase 
in bactericidal activity in 4/5 of the isolates upon combining 
aztreonam with ceftazidime-avibactam, as opposed to using 
aztreonam, aztreonam-avibactam, and ceftazidime-avibactam 
which showed no bactericidal activity against any of the iso-
lates [30].

Aztreonam-avibactam combination is superior to relebac-
tam, clavulanate, and vaborbactam in the treatment of mul-
tidrug-resistant (MDR) S. maltophilia. Though there may be 
some decreased susceptibility by some strains in part due to 
overexpression of intrinsic beta-lactamases and efflux pumps 
[31].

Zidebactam (ZID) and WCK 5153

ZID and WCK 5153 are bicyclo-acyl hydrazides (BCHs), de-
rivatives of the DBOs scaffold, and are used for the treatment 
of severe infections caused by highly drug-resistant gram-
negative bacteria [32, 33]. ZID in combination with cefepime 
(FEP) is presently being evaluated in clinical trials for infec-
tions caused by MDR gram-negative pathogens such as P. 
aeruginosa and A. baumannii [32]. Despite being synthetized 
from a DBO scaffold, BCHs were developed with the goal of 
increasing penicillin-binding protein 2 (PBP2) binding in P. 
aeruginosa and A. baumannii rather than improving the com-
pound’s β-lactamase-inhibitory action [32, 34]. That contrasts 
with the first DBO, avibactam, which had a low PBP2 affinity 
in Enterobacteriaceae, followed by OP0595 (RG 6080), which 
had a higher PBP2 affinity but was only active against En-
terobacteriaceae. ZID and WCK 5153 have shown in P. aer-
uginosa a high affinity for A. baumannii PBP2 with inhibitory 
concentration 50 (IC50) of 0.01 g/mL, which was 7 - 8 times 
lower than imipenem and like meropenem, although both are 
known to be powerful PBP2-binding drugs. For wild-type and 

Table 1.  Summary and Classification of Carbapenemases Enzymes

Ambler Classi-
fication System Active site

Carbapenemases enzymes

Chromosomally encoded Plasmid/transposon/
integron-encoded

Class A Serine-beta-lactamases SME, NmcA, SFC-1, BIC-1, PenA, FPH-1, SHV-38 KPC, GES, FRI-1, NmcA
Class B Metallo-beta-lactamases CcrA, CphA, L1 GIM, IMP, VIM, SIM
Class C Serine-beta-lactamases ACT-1, ADC-68 CMY-2, CMY-10, DHA-1
Class D Serine-beta-lactamases OXA-23, OXA-24/40, OXA-58, OXA-143, OXA-235a, 

OXA-134a, OXA-211, OXA-213, OXA-214, OXA-229
OXA-48, OXA-58, OXA-51
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MDR Acinetobacter bacteria, the minimum inhibitory concen-
trations (MICs) of ZID and WCK 5153 were more than 1,024 
µg/mL. Furthermore, combinations of FEP with 8 µg/mL ZID 
or WCK 5153 and sulbactam with 8 µg/mL ZID or WCK 5153 
have resulted in four- and eight-fold decreases in MICs, re-
spectively, and improved antimicrobial activity. Many of the 
different combinations resulted in complete bacterial elimina-
tion after 24 h [32].

Durlobactam (sulbactam/durlobactam)

Sulbactam/durlobactam, previously known as (sulbactam-
ETX2514), constitutes a β-lactam/BLI combination used to 
treat severe A. baumannii-calcoaceticus complex (ABC) or-
ganisms, including MDR strains [35, 36]. This combination of-
ten inhibits PBP3 and therefore has an inherent action against 
A. baumannii. However, high MICs are often detected among 
isolates resistant to carbapenems. When compared to other 
drugs, sulbactam/durlobactam exhibits high in vitro effective-
ness against A. baumannii isolates, including those resistant 
to imipenem/meropenem, amikacin, minocycline, and colistin. 
Moreover, it has been shown to be effective when used with 
current limited antimicrobials used to treat A. baumannii. Sul-
bactam/durlobactam was found to have a good safety profile, 
tolerability, and pharmacokinetic properties in phase 1 and 
phase 2 studies, and is currently being tested in a randomized, 
controlled phase 3 study in patients with A. baumannii infec-
tions, such as hospital-acquired bacterial pneumonia, ventila-
tor-associated bacterial pneumonia, and bacteremia [37].

Nacubactam

Nacubactam, a bridged DBO previously known as RG6080 
and OP0595, is a class A and C BLI with intrinsic antibiotic 
and β-lactam “enhancer” action against Enterobacteriaceae 
[38, 39]. The structure of nacubactam can be distinguished 
from avibactam by an aminoethoxy group attached to the car-
bamoyl side chain. This modification is most likely responsi-
ble for nacubactam’s relatively high antibacterial activity. Na-
cubactam inhibits Escherichia coli PBP2 in a similar manner 
as ETX2514, WCK 5153, and ZID. Furthermore, when cou-
pled with β-lactams, nacubactam, like mecillinam and other 
DOBs (WCK 5153 and ZID), was found to act synergistically 
as a β-lactam enhancer. This is largely attributed to the ability 
of these combinations to target numerous PBPs. Nevertheless, 
nacubactam alone was proven to be effective against gram-
negative bacteria such as E. coli, Klebsiella spp., Enterobacter 
spp., and Citrobacter spp. When coupled with β-lactams, its 
effectiveness is extended to most Enterobacteriaceae isolates 
generating ESBLs, AmpCs, KPCs, MBLs, OXA-48, as well 
as ESBL- and AmpC-producing Enterobacteriaceae that lack 
porins and strains of P. aeruginosa with reduced AmpC, PER, 
or VEB ESBLs [39]. Of interest, there is growing evidence 
that meropenem/nacubactam reduces bacterial burden in the 
lungs of neutropenic mice infected with AmpC and KPC-pos-
itive P. aeruginosa [40].

ETX1317

ETX1217 is a DBO serine β-lactam inhibitor. Despite lacking 
a β-lactam core, EXTA1217 was found to acylate much serine 
β-lactamases, thus deactivating them [41]. Therefore, it is classi-
fied as an antagonist of class A, C, and D serine-lactamases [42]. 
A combination of its oral prodrug (ETX0282) and cefpodoxime 
proxetil (an oral prodrug of a third-generation cephalosporin) 
was also found to improve the efficacy of several β-lactams 
against a variety of MDR Enterobacteria, including CREs [41].

In vitro, ETX1317 preserves cefpodoxime’s antibacterial 
activity against organisms immune to fluoroquinolones, cepha-
losporins, and carbapenems, including Enterobacterales [42]. 
Moreover, it was shown to be effective against drug-resistant iso-
lates in preclinical infection models [41]. Therefore, ETX1317 
has the potential to benefit both patients and the health system 
by decreasing the risk of nosocomial infections and minimizing 
the healthcare expenses associated with hospitalizations [42].

WCK

WCK 4234 is a new DBO with a nitrile side chain at the C-2 po-
sition; it has strong inhibitory action against carbapenemases of 
classes A and D, as well as class C enzymes [43]. In a study by 
Iregui et al, WCK 4234 increased carbapenem activity against 
isolates generating KPC, AmpC, and OXA-lactamases [44].

The combination of meropenem and WCK 4234 was ef-
fective in mouse models infected with carbapenem-hydrolyzing 
OXA-possessing A. baumannii [43]. Moreover, meropenem and 
WCK 4234 were shown to be highly effective against Entero-
bacteriaceae, including KPC-producing K. pneumoniae isolates 
[43, 44]. WCK 4234 also enhanced carbapenem activity against 
MDR A. baumannii expressing OXA-23, OXA-24/40, and 
OXA-58 carbapenemases and hyper-producing the chromosom-
al OXA-51 carbapenemases [44, 45]. Moreover, the combina-
tion of meropenem and WCK 4234 was effective in vivo against 
A. baumannii isolates generating OXA-23 or OXA-26 [44]. In 
vivo studies also showed an MIC for meropenem with WCK 
4234 of 8 µg/mL against OXA-23 and OXA-26, indicating an 
eight-fold reduction when compared to meropenem alone (MIC: 
64 µg/mL). The WCK 4234/meropenem combination was also 
found to be effective in the treatment of MDR A. baumannii-
induced mouse peritonitis and neutropenic lung infection [45].

GT-055(GT-1/GT-055)

Many E. coli, K. pneumoniae, and Acinetobacter spp. MDR 
strains were shown to be susceptible to GT-1, a new sidero-
phore cephalosporin [46, 47]. Some strains, however, have 
shown extremely high GT-1 MICs. Except for YMC2011/11/
B144, non-susceptibility to GT-1 was frequently associated 
with the presence of AmpC-lactamase DHA-1, for which GT-1 
MICs ranged from 4 to 64 g/mL. The high potency of the syn-
ergistic combination of GT-055 and GT-1 in the presence of 
-lactamases in CTX-M- (CTX-M-14, CTX-M-15, CTX-M-27, 
CTX-M-55, CTX-M-65), SHV- (SHV-12, SHV-83), DHA-1-, 
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and SIM-1-producing strains is another feature of this novel 
antibiotic [47]. Additionally, GT-055 has inherent action 
against several Enterobacteriaceae isolates, which likely con-
tributes to its effectiveness against E. coli and K. pneumoniae 
isolates when combined with GT-1 [47].

Boronic acid derived inhibitors

Taniborbactam (FEP/taniborbactam)

VNRX-5133 (taniborbactam), a bicyclic boronate, is a novel 
BLI under clinical testing. VNRX-5133 inhibits SBLs and some 
MBLs, such as NDM-1 and VIM-1/2 [48, 49]. However, the ac-
tivity of VNRX-5133 against IMP-1 and tested B2/B3 MBLs 
was reduced or non-existent. Crystallographic findings show that 
bicyclic boronates have the capacity to block SBLs and MBLs 
by adding a tetrahedral (sp3) boron species [50]. Moreover, a 
study by Wang et al has shown that taniborbactam enhanced FEP 
activity in the same way that avibactam promoted ceftazidime 
efficiency against 66 KPC-2 producers, 30 carbapenem-non-
susceptible Enterobacteriaceae, and 28 meropenem-susceptible 
P. aeruginosa. Of interest, FEP/taniborbactam was more effec-
tive than ceftazidime/avibactam against 56 ESBL-producing, 61 
AmpC-producing, 32 ESBL and AmpC co-producing Entero-
bacteriaceae, 87 NDM-producing, and 21 MBL-producing En-
terobacteriaceae predicted by phenotypic mCIM and eCIM, 82 
Enterobacteriaceae that were sensitive to all tested β-lactams as 
well as 22 carbapenem-non-susceptible P. aeruginosa [49]. Tani-
borbactam concentrations needed to restore the activity of FEP 
were 4 mg/L for Enterobacterales, 32 mg/L for P. aeruginosa, 4 
mg/L for E. coli, and 16 mg/L for K. pneumoniae [51].

A 4 mg/L taniborbactam was required to achieve > 90% 
Enterobacterales isolate susceptibility to FEP. However, tani-
borbactam failed to reach similar susceptibility against Pseu-
domonas since seven isolates showed resistance even at a con-
centration of 32 mg/L [51].

Resistant Enterobacterales and P. aeruginosa species 
were found to have increased expression of VIM and AmpC 
genes [52].

Human studies done to assess pharmacokinetics of tani-
borbactam showed no added adverse effects when compared 
to placebo when treated with doses of up 1,500 mg for a sin-
gle dose, and a total of 2,250 mg/day for 10 days. Increased 
doses of taniborbactam were not associated with increased 
adverse effects. No adverse effects on heart cardio-dynamics 
were noted (including QTcF changes, heart rate and T-wave 
morphology) [53].

VNRX-5236 (ceftibuten (CTB)/VNRX-7145)

VNRX-5236 is a very powerful inhibitor of all four Ambler types 
of β-lactamase enzymes that is also extremely efficient in a wide 
spectrum of gram-negative bacteria using a cyclic boronate tem-
plate. The N-(2-aminoethyl)cyclohexylamine side chain of 20 
(VNRX-5133) was shown to be important for broad-spectrum 
β-lactamase inhibition as well as improved gram-negative outer 

membrane permeability and periplasmic accumulation [54].
The combination of CTB/VNRX-7154 showed similar 

potency level to ceftazidime-avibactam (IV) and meropenem-
avibactam against Enterobacterales-producing SBLs, in in 
vitro studies. This combination offers an alternative path to 
treatment since it is readily orally available [55].

CTB/VNRX-5236 has demonstrated potent antibacterial 
activity against beta-lactamases-producing Enterobacterales 
including KPC, CTX-M-15, P99AmpC, CMY-2, OXA-1, and 
OXA-48 [56].

In vivo, efficacy of CTB/VNRX-5236 was assessed in 
mice injected with K. pneumoniae strain resistant to CTB. Re-
sults showed that CTB/VNRX-5326 delivered orally or subcu-
taneously was able to rescue CTB with median effective dose 
(ED50) values of 12.9 and 13.5 mg/kg, respectively [56].

QPX7728 (meropenem/QPX7728)

QPX7728 is a BLI that was developed as part of the boronic acid 
pharmacophore program. It was the first medication from this 
class to be approved by the FDA and the European Medicines 
Agency (EMA). When compared to the newly licensed drugs such 
as avibactam, vaborbactam and relebactam, QPX7728 has a wid-
er beta-lactamase inhibitory spectrum. Drugs from this class are 
strong inhibitors of Enterobacteriaceae class A carbapenemases, 
such as KPC, class C beta-lactamases and, some class D enzymes 
[57, 58]. Of note, this class was the only class among the newly li-
censed drugs to show significant activity against Baumannii class 
D carbapenems such as OXA-23, OXA 24/40 and OXA 58 as 
well as the B1 subclass such as NDM, VIM, and IMP [58, 59]. 
Other drugs such as durlobactam have shown significant activ-
ity against the Acinetobacter OXA enzymes but were not capable 
of inhibiting class B MBLs. Furthermore, taniborbactam inhibits 
certain MBLs; however, it has no effect on Acinetobacter’s OXA 
carbapenemases. Therefore, QPX7728 is a promising candidate 
for future research because of its ultrabroad-spectrum beta-lacta-
mase inhibitory profile. In summary, antibiotics with QPX7728 
are effective against bacteria producing class A ESBLs (CTX-M, 
SHV, TEM, VEB, PER) and carbapenemases (KPC, SME, NMC-
A, BKC-1). QPX7728 also inhibits both plasmid (CMY, FOX, 
MIR, DHA) and chromosomally encoded (P99, PDC, ADC) 
class C beta-lactamases and class D enzymes, including carbap-
enemases such as OXA-48 from Enterobacteriaceae and OXA 
enzymes from A. baumannii (OXA-23/24/72/58). Many class B 
MBLs (NDM, VIM, CcrA, IMP, and GIM, but not SPM or L1) 
are likewise inhibited by QPX7728 [58].

β-lactam derived inhibitors, penicillin sulfones

Enmetazobactam (AAI101) (FEP/enmetazobactam)

AAI101, a new drug from the penicillanic acid sulfone family, 
is an ESBL inhibitor in phase I clinical studies [60]. Its struc-
ture is like that of tazobactam with one significant variation; 
AAI101 has a strategically positioned methyl group, which 
provides the inhibitor with a net neutral charge allowing it to 
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penetrate bacterial cells more effectively [61]. AAI101 has an 
inhibitory action against class A lactamases, including ESBLs, 
carbapenemases, and clavulanic acid-resistant lactamases [61]. 
Moreover, its addition to FEP has shown to regain its efficacy 
against an immune population of E. coli and K. pneumoniae 
[62]. This provides a possible carbapenem-free treatment regi-
men for infections caused by Enterobacteriaceae ESBLs [61]. 
In summary, the combination of FEP/emetazobactam provides 
a novel therapy option for challenging gram-negative bacteria 
during an age of high bacterial resistance and limited therapeu-
tic alternatives [62].

LN-1-255

Buynak’s penicillin-based sulfone 1 (LN-1-255) has shown 
significantly more effectiveness than tazobactam and avibac-
tam against relevant CHDLs in A. baumannii both plasmid-en-
coded OXA-23, OXA-24/40, OXA-58, OXA-143, and OXA-
235, and chromosomally encoded OXA-51 as well as OXA-48 
produced by K. pneumoniae. LN-1-255 increases imipenem’s 
in vitro activity by 32- to 128-fold and has high therapeutic 
effectiveness in vivo [63]. Its efficacy stems from its ability to 
create an indolizine adduct that is resistant to hydrolysis which 
is generated by nucleophilic attack of the pyridine nitrogen 

atom on the conjugated initial imine adduct after the dioxothia-
zolidine ring is opened [63].

Table 2 summarizes the therapies aimed at treating infec-
tions caused by carbapenem-resistant pathogens.

Figure 1 shows the chemical structures of the various car-
bapenemase inhibitors (biomodel.uah.es).

Conclusion

Carbapenems, the most effective β-lactam antibiotics, display a 
broad spectrum of antibacterial activity. A carbapenem together 
with a β-lactam ring provides a great stability against hydroly-
sis by β-lactamases. These agents are mostly used as treatment 
against severe infections. Mediated by carbapenemases, carbap-
enem resistance drastically limits treatment options for gram-
negative bacteria resistant to most β-lactams and/or all carbapen-
ems. These pathogens often infer resistance to other antibiotics 
such as aminoglycosides and quinolones, which is problematic. 
Colistin and fosfomycin are usually the two antibiotics utilized 
in such scenarios, but their use has been limited due to their tox-
icity profile. Tigecycline has been utilized as a rescue therapy, 
but resistance is rapidly increasing as well [64, 65].

Finally, adequate antimicrobial stewardship programs and 
carbapenems-sparing strategies must be implemented in clini-

Table 2.  Carbapenem-Resistant Pathogens and Their Therapies

New beta-lactam/beta-lactamase inhibitor

Main bacterial targets
Carbapenem-resistant 

A. baumannii
Carbapenem-resistant 

P. aeruginosa
Carbapenem-resistant 

Enterobacteriaceae
SBLs MBLs SBLs MBLs SBLs MBLs

Diazabicyclooctane derived inhibitors
  Ceftazidime/avibactam Y Y
  Imipenem/relebactam
  Aztreonam/avibactam Y Y
  Cefepime/zidebactam Y Y Y Y
  Sulbactam/durlobactam Y
  Meropenem (or cefepime, or 
aztreonem)/nacubactam

Y Y Y

  Cefpodoxime/ETX1317 Y Y
  Meropenem/WCK 4234 Y N Y N
  GT-1/GT-055 Y Y Y Y
Boronic acid derivative inhibitors
  Meropenem/vaborbactam
  Cefepime (or meropenem)/taniborbactam Y Y Y Y
  VNRX-7145/ceftibuten Y
  Meropenem/QPX7728 Y Y Y Y Y Y
β-lactam derived inhibitors
  Cefepime/enmetazobactam Y
  Imipenem/LN-1-255 Y Y

SBLs: serine β-lactamases; MBLs: metallo-β-lactamase; Y: yes; N: no.
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cal settings to preserve the effectiveness of these antibiotics 
[66]. Appropriate infection control and prevention measures 
along with the rationale use of carbapenems could offset car-
bapenem resistance and provide us with time to develop new 
inhibitory molecules.
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