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Parasites Induced Skin Allergy: A Strategic Manipulation 
of the Host Immunity 

Alketa Hysni Bakiria, d, Ervin Cerciz Mingomataja, b, c, d

Abstract

The absence of a consistent link between parasitoses and skin al-
lergic symptoms in the clinical investigations contrasts to the fact 
that some parasites are the most potent inducers of immunoglobulin 
E that exist in nature. To shed some light into this question, this 
review is focused on the actual knowledge regarding parasites life 
cycle, interactions with host immunity, the influence on host behav-
ior, and finally the role of all these factors on the skin allergy. The 
collected data demonstrate that parasites could manipulate the host 
behavior for its own benefit in different ways, altering its (epi)ge-
netic, biochemical, immunologic or physiologic functions as well 
as altering its behavior and activity. In this context, skin allergy 
may be associated with certain stages of the parasites’ life cycle and 
migration into biological barriers, but not necessarily with presence 
of the parasitosis in the host organism. As compared to T helper 
(Th) 1 response, the Th2 one, the eosinophilic infiltration and the 
complement inhibition could assure better conditions for the devel-
opment of some parasites. Taken together, the suggested hypothe-
ses could be a plausible explanation for the epidemiological puzzle 
regarding urticaria occurrence, Th2 response and parasitoses, but 
further studies are necessary to provide better-based conclusions.

Keywords:  Eosinophilic Infiltration; Host behavior; Parasites life 
cycle; Skin allergy; Th1/Th2 response

Introduction

Parasitic diseases are often considered as a classic cause of 
urticaria [1-3]. Potential urticaria-associated pathologies can 
be ascaridiosis, trichinellosis, fasciolosis, giardiosis, tox-
ocarosis, anisakiasis, schistosomosis, strongyloidosis, hyda-
tidosis, blastocytosis, filariasis, etc [2-6]. 

Nevertheless, laboratory and clinical investigations 
greatly vary from one centre to the other and the link be-
tween these infections and skin signs does not rely on hard 
data. Thus, French studies have suggested a high prevalence 
of Toxocara canis markers in chronic urticaria, but anti-par-
asitic treatment had only inconstant effects [7]. Similarly, 
there are only a few case reports about cutaneous manifesta-
tions caused by giardiasis [8-10]. Many authors consider that 
such cutaneous manifestations as urticaria and itching were 
secondary to the associated gastrointestinal infection due to 
Giardia lamblia cysts and trophozoite forms, as they may 
disappear under specific treatment [10]. Also, the presence 
of urticaria associated with Blastocystic hominis infection 
has been described in very few studies [11]. 

The absence of a consistent link between parasitoses and 
skin allergic symptoms in the clinical investigations con-
trasts to the fact that some parasites are possibly the most 
potent inducers of immunoglobulin (Ig) E that exist in na-
ture [12-16]. In a previous review, we argued about the re-
lationship between Helminth-induced IgE response and the 
decrease of respiratory symptoms during this pathology [16]. 
In effect, the immuno-inflammatory response to helminthic 
infections and allergic diseases have some similarities, the 
most profound being the increases in eosinophils and serum 
total IgE concentration [12-15, 17, 18]. Both entities, hel-
minthic infections and atopic response are Th2/interleukin 
(IL)-4 inducers, but helminthic infections do not only stimu-
late specific IgE responses against their own antigens, but 
also they induce a strong non-specific polyclonal synthesis 
of this Ig [12-16]. The experimental injection of the Ascaris-
infected patients’ serum into the rats’ peritoneal is associated 
with an increase in mesentery mast cells and vascular con-
gestion [16, 19]. 

In this paper we will focus in the aspect of relation-
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ship between the skin allergy and parasitic pathologies. Ir-
respective of the abundant literature regarding the associa-
tion between exposure to parasites and the enhancement of 
IgE response, no definite conclusions about the causality 
of the weak association between these findings and the low 
frequency of urticarial reactions are yet warranted. To shed 
some light into this question, this review is focused on the 
actual knowledge about parasites life cycle, interactions with 
host immunity, the influence on host behavior as well as the 
role of these factors on the urticaria and skin allergy.

 
The Role of Host-parasite Interaction in the 
Relationship Parasitosis-Urticarial Reaction

Th2 host response and parasites survival/development

Parasites are designed by evolution to invade the host and 
survive in its organism until they are ready to reproduce [20]. 
They can release a variety of molecules that help them to 
penetrate the defensive barriers and avoid the immune at-
tack of the host. In this respect, particularly interesting are 
enzymes and their inhibitors secreted by the parasites [13, 
14, 20]. Thus, while serine-, aspartic-, cysteine-, and metal-
loproteinases are involved in tissue invasion and extracel-
lular protein digestion, helminths secrete serpins, aspins, and 
cystatins to inhibit proteinases, both of the host and their 
own. Proteinases and their inhibitors, as well as helminth 
homologues of cytokines and molecules containing phos-
phorylcholine, influence the immune response of the host 
biasing it towards the “anti-inflammatory” Th2 type [13-15, 
20]. Besides the eosinophilic infiltration, the IgE response as 
component of the Th2 profile is estimated to be a cornerstone 
of host defense during parasitoses [12-16, 21].

During parasitoses, the efficacy of the Th1 response may 
be superior to the Th2 one

Current reports suggest that interaction between parasites 
and hostile immunity is more complex than previously es-
timated. In this respect, the experimentally obtained data 
indicate that even hostile cytokines used for cell-cell com-
munication can also be exploited by the parasite as clues 
to find suitable target organs [22]. In nematodes, the Th2 
type response is affected by parasite dose [21]. For Trichi-
uris muris infections, Th1-type immune responses occurred 
in animals given repeated low dose infections; latterly, the 
immune response developed into a protective Th2-type re-
sponse. During Strongyloides ratti infections, the host im-
mune response changes both qualitatively from a Th1- to a 
Th2-type immune response and the Th2-type response in-
creases quantitatively with higher dose infections [21]. Fur-
thermore, parasite survivorship was significantly negatively 
related to the concentration of parasite-specific IgG1 and IgA 

[23, 24]. At the metacestode stage of Echinococcus infection, 
studies of the immune responses in the experimental murine 
model as well as in humans have shown that (i) cellular im-
munity induced by a Th1-type cytokine secretion was able 
to successfully kill the metacestode at the initial stages of 
development; (ii) antigenic proteins and carbohydrates of the 
oncosphere/metacestode were able to interfere with antigen 
presentation and cell activation, leading to the production of 
IL-10 and other mediators by host lymphocytes and other 
immune cells, and therefore, to the inhibition of the effector 
phase of cellular immune reaction; and (iii) immunogenetic 
characteristics of the host were essential to this parasite-
induced deviation of the immune response [25]. Regarding 
anisakiasis, acute symptoms are caused by an IgE-mediated 
allergic reaction in the gastrointestinal wall. Cuellar et al. 
demonstrated that anisakis antigens react with antibodies 
raised against vertebrate IL-4 [26]. With respect to schisto-
somosis, most of the chronic patients presented a Th2 profile 
with low production of gamma interferon (IFN-γ) as com-
pared to subjects resistant to this infection, while the inten-
sity of infection favors the production of IL-10 [27]. In addi-
tion, the blockade of IL-4 and IL-5 as well as the addition of 
the recombinant IL-10 significantly reduced the peripheral 
blood mononuclear cell proliferative response to soluble egg 
and adult worm antigens [28]. Meanwhile, experiments in 
mice have shown that the relative success of Giardia muris 
in completing its life cycle in a primary infection might be 
due, in part, to the stimulation of a Th2-type response. In 
contrast, a stronger Th1 response may lead to a better control 
of the primary infection [29]. These data suggest that IL-10 
is an important cytokine in regulating the immune response 
and possibly controlling morbidity in human parasitoses, and 
that the production of IFN-γ may be associated with resis-
tance to infection [28].

Taken together, these findings may suggest that hos-
tile IgE/Th2 response has defensive effects, but the IgG/
Th1 type may also provide such qualities, which in some 
situations seem to be superior to the Th2 one. In vivo, the 
Th2 profile might be not simply a host-chosen reaction, but 
rather the most efficient permitted humoral response dur-
ing host-parasite interaction. The fatal outcome in appar-
ently immunocompetent patients due to multiorgan failure 
after Strongyloides stercoralis septicaemia following a short 
course of prednisolone therapy may lead to the suggestion 
that glucocorticoids may suppress the parasite-attenuated 
host immune defenses [30]. In our opinion, the Th2 devia-
tion may permit parasites to invade the host organism, and 
to select specific organs or host cell types as predilection site 
to reside, maturate or even proliferate [13, 31, 32]. While 
many microparasites escape immune attack by antigenic 
variation or sequestration in specialized niches, helminths 
appear to thrive in exposed extracellular locations, such as 
the lymphatics, bloodstream, or gastrointestinal tract. Key 
events among the host cell population are dominance of the 
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Th2 cell phenotype and the selective loss of effector activity, 
against a background of regulatory T cells, alternatively ac-
tivated macrophages, and Th2-inducing dendritic cells. The 
sum effect of these changes to host reactivity is to create an 
“anti-inflammatory” environment, which is most favorable 
to parasite survival [33]. In Echinococcus multilocularis in-
fection, a combined Th1 and Th2 cytokine profile appears 
crucial for prolonged metacestode growth and survival. Vuit-
ton has demonstrated that Th1 cytokines promote the initial 
cell recruitment around the metacestode and are involved in 
the chronicity of the cell infiltrate leading to a fully orga-
nized periparasitic granuloma and its consequences, fibrosis 
and necrosis [25]. Meanwhile, the Th2 cytokines could be 
responsible for the inhibition of a successful parasite kill-
ing, especially because of the “anti-inflammatory” potency 
of IL-10. This combination of various arms of the immune 
response results in a partial protection of both Echinococcus 
metacestode and host [25, 34]. However, it may also be con-
sidered responsible for several complications of the disease. 
The Th2-related IgE synthesis and mast cell activation, well 
known to be responsible for anaphylactic reactions in cystic 
echinococcosis, are more rarely involved in ‘allergic’ com-
plications in alveolar echinococcosis [25]. With regards to 
Anisakis simplex, it shares several epitopes with IL-4, impor-
tant for the Th2 response development in human anisakiasis, 
where the parasite may modulate the Th1-Th2 dichotomy for 
its own benefit by mucosal inflammation control in an at-
tempt to avoid the larval expelling [26].

An additional factor of the IgE response induction:  the 
inhibition of complement pathway   

Apart from the increasing of the tissue permeability and lar-
vae penetration, the induction of IgE response may have an 
additional advantage for the development of parasites in the 
hostile organism. In contrast to IgG, the IgE antibody does 
not activate the complement system. In animal experiments, 
IgG is shown to activate complement, and therefore, to kill 
the L3 larvae of Angiostrongylus cantonensis [35]. In vivo, 
however, the classic pathway activation can be avoided be-
cause IgE does not interact with fraction C1 of the comple-
ment [36]. Regarding the complement inhibition in humans, 
the larval L3 products of anisakis exercised a stronger ef-
fect on the classical pathway than on the alternative one, 
constituting a mechanism to evade host defenses, similarly 
to other parasitic diseases. In this context, detailed studies 
revealed that larval products of Anisakis simplex act at the 
level of the C3 and C2 proteins, which are early components 
of the classical complement pathway [37, 38]. These find-
ings suggest that parasites cannot “switch off” the humoral 
host immunity, but they could induce the Th2 profile. The 
Th2/IgE response may assure better survival possibilities for 
the parasites within the host due to parasitic avoidance of the 
complement pathway.

Urticaria as symptom of parasite migration through the 
biological barriers 

Apart from parasitoses, the IgE response is also strongly as-
sociated with pathogenesis of the immediate allergic diseas-
es such as urticaria, angioedema, etc. Despite expectations, 
the association of the skin allergic reactions with presence of 
parasitic infections does not rely on hard data [7]. Recently, 
much evidence is collected about the interaction’s details be-
tween the hosts and parasites, but fewer attempts are made 
to clarify the urticarial puzzle during parasitoses. Reflecting 
on these findings, it could be mentioned that urticaria is a 
skin manifestation, related to helminths or arthropods with a 
cutaneous phase: Schistosoma, Sarcoptes scabiei, as well as 
ticks and other blood sucking arthropods have been involved 
in Th2-based immunologic mechanisms [39, 40]. Among 
patients with toxocaral infection, an elevated ECP level was 
significantly associated with both cough and rhinitis, a high 
level of specific anti-toxocara IgE with itchy rashes [41]. 
Loeffler’s syndrome, which resembles the pathophysiologi-
cal features of chronic asthma with its Th2-related immuno-
logic feature, is related to ascaris and necator infection, both 
of which have an obligatory pulmonary phase [42]. Some 
helminths like necator and schistosoma have even both a 
cutaneous and pulmonary phase [43]. Such pathologies as 
larva migrans or cercarial dermatitis are also examples of 
the skin migration. Being attempts to find the suitable host 
environment, the parasitic induction of urticaria, atopic phe-
notype, itching and the increased tissue permeability could 
favorise larvae migration and therefore, the completing of 
the parasitic life cycle [13, 16]. In the case of human ani-
sakiasis, this would be a hopeless attempt to destroy hostile 
barriers (intestinal wall, etc) to search for the missed suitable 
environment, because they cannot develop within terrestrial 
mammalians. Consequently, the type I allergic reaction takes 
at least 2 to 6 hours to be triggered by alive larvae, while the 
ingestion of lyophilized larvae, or its equivalent in antigen, 
does not induce clinical symptoms in sensitized individuals 
[44, 45]. A similar scenario develops also within paratenic 
hosts during larvae migration in different visceral organs, 
like in case of Toxocara canis [46]. These data suggest that 
the development of allergic symptoms could be an active ef-
fect of parasites and not only a host defense reaction.

In some particular cases, IgE and IgG values will differ 
depending on the time relapsed between the parasitic contact 
and therefore on its developing phase [47]. During infection 
of mice with Litomosoides sigmodontis, female adult worms 
from prepatent infections protects mice injected with lipo-
polysaccharide due to inhibition of the host Th1 response, 
whereas microfilariae worsen lipopolysaccharide-induced 
sepsis through the induction of the Th1-related cytokines in 
the peripheral blood [31]. Similarly to the immune modula-
tion, Giardia lamblia can express different kinds of variant 
surface proteins (VSP). The giardial variant-type formation 
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and VSP mRNA levels after infection of mice with cysts lead 
to an antigenic reset of the parasite, which appears to be as-
sociated with excystation [48]. In this respect, the VSP H7 
type has to be regarded as a predominant variant of Giardia 
lamblia clone GS/M-83-H7 that (re-)emerges during early-
stage infection and may contribute to an optimal establish-
ment of the parasite within the intestine of the experimental 
murine host [48]. In summary, the Th2 response seems to 
be a host reaction, induced under the parasites’ influence. 
It may permit the migration of parasites under the skin, in 
lymphatic ways and into some parenchimatous organs. In a 
few cases, this response may be induced in some developing 
phases, such as in case of excystation (which is also a kind 
of barrier penetration) or epithelial inoculation of giardiasis. 
Taken together, these data indicate that urticarial symptoms 
may be related to the larval stage or hostile tissue penetra-
tion, but not necessarily  only to the presence of parasitic 
infection in the human organism. This may explain the lack 
of clear evidence regarding the correlation between the para-
sitic diseases and the urticaria development.

Eosinophils as barrier perforators: are they double game 
players? 

In spite of the humoral mechanisms, there is evidence of im-
portant parasite-induced effects on innate cell types, particu-
larly mast cells and eosinophils. According to Maizels et al., 
the sum effect of these changes to host reactivity is to create 
an “anti-inflammatory environment”, which is most favor-
able to parasite survival [15, 33]. However in our opinion, 
the role of eosinophils is more complex. The eosinophils like 
the complement system can induce increased cell membrane 
permeability [49, 50]. This eosinophil-induced role is also 
shown on various biologic barriers, including the parasite 
surfaces. This effect is called “frustrated phagocytosis” [48, 
51]. Thus, Kaji et al. reported about a case of urticaria, eo-
sinophilic cholecystitis and a simultaneous onset with peri-
carditis after an ascaris infection [52]. Infection from Angio-
strongylus cantonensis is generally associated with damage 
of blood-brain barrier and neurological disorders, which is 
assumed to be a consequence of eosinophilic meningitis [50, 
53]. 

Besides the host-influence, eosinophils migration close 
to parasites could be also a strategic step induced even from 
the parasite, leading to the allergic symptoms. While a hype-
reosinophilia is an argument in favor of a progressive toxo-
cara infection, high total IgE level is considered a hallmark 
of visceral infections by parasites [54, 55]. Furthermore, 
anisakis larvae extract exercises a chemotactic effect for eo-
sinophils [56]. In this context, alive L3 larvae can exhibit 
the main hyperergic response in the duodenum, decelerating 
their transit into the successive parts of intestinum, but also 
inducing the transit into the tissues outside the duodenal lu-
men [57]. In other words, since parasites affect the behavior 

traits with selectively benefit the parasite, rather than causing 
a general alteration of the host behavior, the induction of the 
urticaria and the atopic phenotype might be only an efficient 
or hopeless larval attempt to find the suitable host to produce 
eggs. The IgE-response, the eosinophilic chemotaxis, or the 
general itching cannot be only host defenses, but also larval 
attempts to destroy hostile barriers to search for the missed 
suitable hostile environments. Taken together, these findings 
indicate that eosinophils as biological barrier perforators are 
implicated under the simultaneous influence of the host and 
parasites in a double game. This hypothesis is supported for 
example by the presence of local eosinophil infiltration in 
the skin when Dracunculus medinensis larvae emerge from 
the inferior limbs in the ponds water [58]. In these circum-
stances, the eosinophils could help parasites to destroy the 
skin integrity, because in this stage dracunculae larvae can be 
developed only within thermocyclops living in ponds. This 
also demonstrates that helminths display highly complex life 
cycles in which the establishment of adults or larvae within 
host target organs as well as the transition of one develop-
mental stage to the following is influenced by host-derived 
factors [22].

Parasites as efficient manipulators of the host behavior

The parasite-manipulated involvement of host immune 
mechanisms supports the opinion that parasites are efficient 
manipulators of the host behavior (a further dimension of the 
parasite influence on the host reaction) [57]. The parasitic 
ability to affect the behavior of infected host has been docu-
mented and reviewed by different authors [13-16, 59, 60]. 
Although changes in the behavior of infected hosts do occur 
for pathogens with direct life cycle, they are most commonly 
recorded in the intermediate hosts of parasites with com-
plex life cycle. In the simplest case, the changes in behavior 
increase rates of contact between infected and susceptible 
conspecific hosts, whereas in the more complex cases fairly 
sophisticated manipulations of the host’s behavioral reper-
tory are achieved [59-62]. In this context, because sexual 
reproduction of Toxoplasma gondii can be accomplished 
only in felines, there are strong selective pressures on the 
parasite to evolve mechanisms to enhance transmission from 
the intermediate host to the definitive feline host and thereby 
complete its life cycle. The predilection of Toxoplasma gon-
dii for the brain of its intermediate host places it in a privi-
leged position to cause such manipulation [62]. Ferreira et 
al. recently demonstrated that the host cell transcriptome, in-
cluding the expression of distinct host cell genes, can trigger 
bradyzoite development and cyst formation, strongly indi-
cating that the complex cellular environment may govern the 
developmental differentiation of this protozoa [63]. More-
over, the pattern of histone H3 arginine methylation distin-
guishes certain promoters, illustrating the complexity of the 
histone modification machinery in toxoplasmosis [64, 65]. 
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Being placed in the intermediate host brain, the toxoplasma-
expressed epigenomic mechanisms may lead to variations 
in gene expression during the transformation of tachisoites 
into bradysoite, waiting then for the definitive host. This 
way, Toxoplasma gondii dispose the ability to manipulate 
the personality profile of the intermediate host [16, 59]. The 
toxoplasmosis-infected people are more predisposed to take 
a risk, or are less watchful for example in the motorways, 
whereas toxoplasmosis-infected rats can even lose the cat 
predation risk [16, 61, 66, 67]. Also the loss of predation risk 
by rats or the loss of watchfulness by humans at least at the 
prehistoric time before the invention of entombment, after a 
toxoplasmic infection, led usually to the rip of their bodies 
from some carnivore and therefore to the transmission of the 
parasite into its definitive host like felines [16]. The para-
site thus manipulates the behavior of its intermediate host to 
enhance its transmission to the definitive one [66, 67]. In a 
similar manner, the experimentally Toxocara canis-infected 
BALB/c mice take significantly longer to drink from a water 
source compared with control mice [68]. Moreover, infected 
mice displayed reduced levels of anxiety to aversive and ex-
posed areas of the maze, particularly in the case of the mod-
erate and high intensity mice [69]. These findings suggest 
that a toxocara-infected paratenic host can be an easier prey 
for their predators. During dracunculiasis, the burning effect 

in patient’s lower limbs during pregnant larvae extrusion is 
also a host behavior manipulation, because the expelling 
first-stage larvae can be developed only within copepods of 
the ponds [58]. Consequently, the patient hurries to immerse 
the burning limbs in the ponds in order to cool them.

The reduction of respiratory allergic symptoms (like 
wheezing or airway hyperreactivity) in intensive helminth-
infected populations is another example of host behavior 
manipulation and an evolutionary adaptation from the point 
of view of parasites [16]. This reduction assures those bet-
ter chances for their reproduction and development in the 
environment “host”, because the liberation mammalian ef-
forts against these parasites are suppressed. Thus, toxocara, 
ascaris, trichiuris, and hookworm have a phase of larval mi-
gration into the respiratory system or at least, their entrance 
way (as eggs) in the human body is the nose or the mouth 
[16, 42]. To assure their penetration into the host and latter 
their reproduction or development, these parasites need to 
affront or avoid the reactive (including allergic) response of 
the host (like the cough, airway obstruction and airway hy-
per-responsiveness) due to induction of immuno-modulatory 
network [13-16, 70]. 

The manipulation of host reaction is not an exclusive 
ability of parasites. Common respiratory infective pathogens 
can manipulate the host behavior. While during incubation 

Figure 1. Th1 vs. Th2 response during parasitoses and the development of allergic skin symptoms: Although both re-
sponses provide antiparasitic effects, the Th1 response seems to be superior to the Th2 one. Maybe the Th2 response is a 
host-response, chosen by the parasite that is associated with better survival and hostile tissue penetration. The eosinophil 
chemotaxis and the avoidance of complement-dependent innate mechanisms are targets of parasite-induced host immune 
modulation in order to improve its development and survival possibilities within hostile organism.
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they could suppress pathologic symptoms due to inhibition 
of the innate immunity, later they might anticipate the pro-
viding of specific humoral immunity abandoning the host 
due to induction of the respiratory symptoms [71]. Thus, 
the soluble G glycoprotein acts as bacterial cytokine with 
inhibiting expression of ICAM-1, IL-8 and NF-κB during 
incubatory period of respiratory syncytial virus (RSV) [71-
74]. The experimental infection of BALB/c mice with a RSV 
mutant lacking the glycoprotein G gene increases NK and 
neutrophil trafficking to the lungs compared to control mice 
infected with a strain of RSV that has glycoprotein G [71, 
73]. Although the secreted form of glycoprotein G accounts 
for no more than 20% of the total glycoprotein synthesized 
in cell culture through the course of infection, secreted gly-
coprotein represents about 80% of the protein released into 
the medium early in infection, during the first 24 h [73, 74]. 
This scenario first could assure a maximal multiplication for 
the infectious agents; then the host abandonment on time to 
catch a next one assures maximal successive reproduction 
[71]. Taken together, these data demonstrate that parasites 
and other infective agents can be efficient host manipulators 
using them for their reproductive success, independently to 
the fact if they induce or inhibit the host pathology [16, 50, 
71].

Conclusions

Based on the current knowledge, it could be concluded that 
parasites try to manipulate the host behavior for its own ben-
efit in different ways, altering its (epi)genetic, biochemical, 
immunologic or physiologic functions as well as altering its 
behavior and activity [13-16, 62, 65, 75, 76]. Current data in-
dicate that skin allergy may be associated with certain stages 
of the parasites’ life cycle, but not necessarily with pres-
ence of the parasitosis in the host organism. As compared to 
Th1 response, the Th2 one (including the IgE production), 
the eosinophilic infiltration and the complement inhibition 
might assure better conditions for the development of some 
parasites (Fig. 1). The ambiguity of the host immune re-
sponse during parasitic infection remains a puzzle, but much 
evidence stresses the fact that the sum effect of the deviated 
host reactivity may create an environment, which is also 
favorable for the parasite survival [33]. Taken together, the 
combination of suggested hypotheses could be a plausible 
explanation for the epidemiological association’s paradox 
between skin allergy (including urticaria), IgE response and 
parasitoses [10]. Nevertheless, further studies focused on the 
stages of parasites’ development may lead to the providing 
of better-based conclusions and invention of novel therapeu-
tic strategies [16, 70]. They can consist on the monitoring of 
experimental parasitic development or dispersion/penetra-
tion on the host tissue and the association of parasitic life 
stages with urticarial development.
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