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The Possible Mechanisms for Improvement of Liver Function  
due to Sodium-Glucose Cotransporter-2 Inhibitors

Hidekatsu Yanaia, b, Mariko Hakoshimaa, Hisayuki Katsuyamaa

To the Editor

Recently, sodium-glucose cotransporter-2 inhibitors (SGL-
T2is) are frequently used to treat patients with type 2 diabetes. 
We previously reported that SGLT2is improve liver function 
in addition to lowering plasma glucose [1, 2]. Hepatic histo-
logical improvement by SGLT2is was also observed. SGLT2is 
reduced scores of steatosis, lobular inflammation, ballooning, 
and fibrosis stage by 78%, 33%, 22%, and 33% at 24 weeks 
compared to the pretreatment, respectively [3]. Reduction of 
body weight and insulin resistance by SGLT2is may be largely 
associated with an improvement of liver function [4]. Howev-
er, we have not fully understood the potential SGLT2i-induced 
mechanisms for an improvement of liver. Therefore, we dis-
cussed the possible underlying mechanisms for an improve-
ment of liver function due to SGLT2is by reviewing literatures.

Reported mechanisms for an improvement of liver func-
tion due to SGLT2is are shown in Table 1 [5-13]. Four-week 
repeated administration of ipragliflozin improved not only 
hyperglycemia and hyperinsulinemia but also hyperlipidemia 
and hepatic steatosis in high-fat diet and streptozotocin-nicoti-
namide-induced type 2 diabetic mice [5]. In addition, ipragli-
flozin reduced plasma and liver levels of oxidative stress bio-
markers and inflammatory markers, and improved liver injury 
[5]. Repeated administration of ipragliflozin to streptozotocin-
induced type 1 diabetic rats for 4 weeks significantly improved 
hepatic steatosis and reduced liver levels of oxidative stress 
biomarkers and plasma levels of inflammatory markers, and 
improved liver injury [6]. The effect of ipragliflozin on non-
alcoholic fatty liver disease (NAFLD) in rats fed a choline-
deficient L-amino acid-defined (CDAA) diet was reported [7]. 
Five weeks after starting the CDAA diet, rats exhibited hepatic 
triglyceride (TG) accumulation, fibrosis, and mild inflamma-
tion. Repeated administration of ipragliflozin prevented he-
patic TG accumulation, large lipid droplet formation and liver 
fibrosis. Ipragliflozin also improved hepatic steatosis in high-

fat diet-induced and leptin-deficient obese (ob/ob) mice irre-
spective of body weight reduction [8]. Ipragliflozin-induced 
hyperphagia occurred to increase energy intake, attenuating 
body weight reduction with increased epididymal fat mass. 
However, there is an inverse correlation between weights of 
liver and epididymal fat in ipragliflozin-treated obese mice, 
suggesting that ipragliflozin promoted normotopic fat accu-
mulation in the epididymal fat and prevented ectopic fat accu-
mulation in the liver. Such an effect of SGLT2is on hepatic fat 
accumulation was also reported in humans. Luseogliflozin was 
reported to reduce magnetic resonance imaging-hepatic fat 
content in type 2 diabetes patients with NAFLD [9, 10]. Very 
recently, empagliflozin effectively lowered liver fat content in 
well-controlled type 2 diabetic patients [11]. In this study, em-
pagliflozin raised adiponectin levels [11], which has beneficial 
effects on glucose and lipid metabolism including activation of 
adenosine 5'-monophosphate (AMP)-activated protein kinase 
(AMPK) [14].

AMPK activation was also induced by canagliflozin, 
which was caused by inhibition of Complex I of the respira-
tory chain, leading to increases in cellular AMP or adenosine 
diphosphate (ADP) [12]. Canagliflozin inhibited lipid synthe-
sis, an effect that was absent in AMPK knockout cells and that 
required phosphorylation of acetyl-CoA carboxylase (ACC) at 
the AMPK sites [12]. Another study also showed that SGLT2is 
ameliorated fat deposition and increased AMPK phosphoryla-
tion, resulting in phosphorylation of its major downstream tar-
get, ACC, in human hepatocytes, which led to the downregula-
tion of downstream fatty acid (FA) synthesis-related molecules 
and the upregulation of downstream β oxidation-associated 
molecules [15]. Tofogliflozin reduced the body weight gain, 
mainly because of fat mass reduction associated with a dimin-
ished adipocyte size in C57BL/6 mice [13]. Serum-free FA and 
ketone bodies were increased and the respiratory quotient was 
decreased in the tofogliflozin-treated mice, suggesting the ac-
celeration of lipolysis in adipose tissue and hepatic β-oxidation 
[13]. Hepatic TG contents were decreased. Further, tofogliflo-
zin ameliorates insulin resistance and obesity by increasing glu-
cose uptake in skeletal muscle and lipolysis in adipose tissue.

Empagliflozin shifted energy metabolism towards fat uti-
lization, elevated AMPK and ACC phosphorylation in skel-
etal muscle in diet-induced obese mice [16]. SGLT2is induce 
a negative energy balance state by excreting glucose in the 
urine, which may induce alteration in glucose-FA cycle [17]. 
The fundamental concept of glucose-FA cycle is reciprocal 
substrate competition between glucose and FA in oxidative tis-
sues such as skeletal muscles. By now, many new mechanisms 
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controlling the utilization of glucose and FA have been dis-
covered [18]. Dysregulation of FA metabolism is a key event 
responsible for insulin resistance and type 2 diabetes [19]. We 
speculate that SGLT2i-mediated alteration of glucose-FA cycle 
may induce changes in glucose and lipid metabolism in skel-
etal muscle, adipose tissue and liver, which may be associated 
with amelioration of liver function.

In conclusion, the summary of possible underlying mech-
anisms for an improvement of liver function due to SGLT2is is 
shown in Figure 1. SGLT2is lead to reduction of renal glucose 
reabsorption and decrease of plasma glucose in an insulin-
independent manner, inducing reduction of body weight and 
insulin resistance, which may be largely associated with an 
improvement of liver function. Increased renal excretion of 
glucose may alter glucose-FA cycle and may result in increase 
of FA use/oxidation in skeletal muscle and liver, and increase 
of lipolysis in adipose tissue. The improvement of insulin re-
sistance and altered glucose-FA cycle may ameliorate glucose/
lipid metabolic crosstalk between skeletal muscle, adipose tis-
sue and liver, which may also contribute to an improvement 
of liver function. SGLT2is also induce activation of AMPK, 
which increases FA use/oxidation in skeletal muscle and liver, 
and decreases FA synthesis in liver. Decrease of hepatic fat 
accumulation by SGLT2is reduces oxidative stress and inflam-
mation, which may induce amelioration of liver function.
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