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Higher Fasting and Postprandial Free Fatty Acid Levels 
Are Associated With Higher Muscle Insulin Resistance and 

Lower Insulin Secretion in Young Non-Obese Women

Mika Takeuchia, Satomi Minatob, c, Kaori Kitaokab, d, Ayaka Tsuboib, e, 
 Miki Kurataa, b, Tsutomu Kazumib, f, g, Keisuke Fukuoa, b

Abstract

Background: To assess the relationship of the shape of glucose con-
centration curve during a standardized meal test to serum free fatty 
acid (FFA) concentrations, insulin resistance and insulin secretion in 
young non-obese women.

Methods: Thirty-five young women had a standardized meal for 
breakfast with measurement of glucose, insulin and FFA concentra-
tions at 0 (fasting), 30, 60 and 120 min; the areas under the concentra-
tion curves were calculated (AUCg, AUCi and AUCffa, respectively). 
Meal-induced insulin response (MIR) was calculated as the ratio be-
tween the incremental insulin and glucose concentrations during the 
first 30 min of meal tests. In two women (group A), post-breakfast 
glucose (PBG) returned to levels below fasting plasma glucose (FPG) 
at 30 min; in 15 and 11 women, PBG returned to levels below FPG 
at 60 and 120 min (groups B and C, respectively). In the remaining 
seven women (group D), PBG never fell below FPG.

Results: Despite no difference in fasting insulin and AUCi, fasting 
FFA, AUCg and AUCffa were the lowest in group A, increased lin-
early from group B to C and plateaued in group D, whereas MIR 
might be the highest in group A, decreased from group B to C and 
plateaued in group D.

Conclusion: Young women whose PBG returned to FPG more slowly 
had higher muscle insulin resistance and lower MIR associated with 

higher fasting and postprandial FFA levels compared with young 
women whose PBG returned to baseline more quickly.
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Introduction

Subjects with impaired glucose tolerance (IGT) or impaired 
fasting glucose (IFG) have an increased risk for type 2 diabe-
tes [1-3]. Although more than half of the subjects who devel-
op type 2 diabetes have IGT or IFG at baseline [4], prospec-
tive epidemiological studies have demonstrated that 30-40% 
of subjects have normal glucose tolerance (NGT) at baseline 
[1, 3, 5]. Studies in the general population have demonstrat-
ed that people with NGT whose postload plasma glucose 
returned to fasting plasma glucose (FPG) more slowly had 
greater insulin resistance, a lower early-phase insulin secre-
tion and a higher risk of developing type 2 diabetes compared 
with people whose postload glucose concentration returned to 
baseline more quickly [6, 7]. We recently reported that young 
Japanese women whose post-breakfast glucose (PBG) never 
fell below FPG had lower meal-induced insulin responses 
(MIR) as compared to women whose PBG returned to levels 
below FPG [8].

Many of the metabolic abnormalities in subjects with 
IFG and/or IGT are thought to be secondary to obesity and 
increased insulin resistance [9]. Free fatty acids (FFAs) ap-
pear to link obesity not only to insulin resistance [10] but also 
to the deterioration in β-cell function [11]. Most obese sub-
jects had elevated circulating FFA levels, which will inhibit 
insulin’s antilipolytic action that will further increase FFA 
release into the circulation [12]. However, there are limited 
data in humans, in non-obese subjects in particular, on the 
association between circulating FFA levels and pancreatic 
β-cell function. Almost all experimental studies in humans 
used lipid infusions to raise circulating FFA levels [13-16]. 
In the present study, we sought to assess in young non-obese 
Japanese women 1) the relationship of the shape of glucose 
concentration curve during a standardized meal test to insu-
lin resistance and insulin secretion and 2) whether variations 
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in fasting and postprandial FFA are associated with changes, 
if any, in insulin resistance and insulin secretion. The rela-
tionship to birth weight was also studied because it has an 
inverse relationship with disorders of glucose regulation in 
adults [17].

Patients and Methods

We studied 35 Japanese women aged 21 - 24 years (17 female 
collegiate athletes and 18 untrained female students) as pre-
viously reported [8, 18]. Of 35 women, 32 provided weight 
at birth, and height and weight at 12 and 15 years old either 
through maternal and child health notebook records (issued by 
each municipal office). Thirty-one women provided data on 
family history of diabetes, which considered positive if they 
reported that one of siblings, parents or grandparents were on 
anti-diabetic drugs. Subjects who reported that they were in 
treatment for acute or chronic inflammatory diseases, endo-
crine, cardiovascular, hepatic, renal diseases, hormonal con-
traception and unusual dietary habits were excluded. Nobody 
reported to receive any medications or have regular supple-
ments. The study was approved by the Ethics Committees of 
the University (No. 07-28) to be in accordance with the Hel-
sinki declaration. All subjects gave written consent after the 
experimental procedure had been explained.

Athletes were students from the Department of Health and 
Sports Sciences and non-athletes from the Department of Food 
Sciences and Nutrition of the Mukogawa Women’s University. 
They had been training regularly for 2 years or longer prior to 
the study, 5 h a day and 6 days a week and participated regu-
larly in competitive events in their respective sport specialties. 
Athletes had regular training on the day before measurements. 
Although non-athletes were not engaged in any regular sport 
activity, they had 9,367 ± 1,971 steps/day (mean ± SD of a 
separate group of 77 non-athletes, who used a pedometer for 
consecutive 14 days and mean steps a day were calculated in 
each participant).

At 8:30 a.m. after a 12-h overnight fast, participants com-
pleted a standardized meal for breakfast and measurements of 
anthropometric indices and body composition as described lat-
er. Participants were asked to consume the entire meal within 
15 min. Venous blood was drawn at baseline (0 min), 30, 60 
and 120 min after the start of the meal for the measurement 
of plasma glucose (PG), serum insulin and FFA concentra-
tions. PG was determined by the hexokinase/glucose-6-phos-
phate dehydrogenase method (inter-assay coefficient of vari-
ation (CV) < 2%). Serum insulin was measured by an ELISA 
method with a narrow specificity excluding des-31, des-32 and 
intact proinsulin (interassay CV < 6%). FFA was measured us-
ing enzymatic colorimetric method (Wako Chemicals, Tokyo, 
Japan). In fasted blood samples, the following were measured 
as previously reported [19]: serum cholesterol, triglycerides, 
HDL cholesterol, apolipoprotein AI and B-100 (apoAI and 
apoB, respectively), adiponectin, leptin and high-sensitivity 
C-reactive protein (hsCRP).

MIR was calculated as the increment in serum insulin 
(Δinsulin30) divided by the increment in PG (Δglucose30) dur-

ing the first 30 min of the meal test and expressed in µU/mg. 
The area under the concentration curve (AUC) of PG, serum 
insulin and FFA was calculated with the trapezoidal method 
(AUCg, AUCi and AUCffa, respectively). Homeostasis model 
assessment of insulin resistance (HOMA-IR) was calculated as 
a more reflective surrogate of hepatic insulin resistance [20]. 
The adipose insulin resistance (Adipo-IR) was calculated as a 
product of fasting insulin and FFA concentrations [21].

The standardized test meal was developed by the Japa-
nese Diabetes Society to assess both postprandial hypergly-
cemia and hyperlipidemia [22]. This meal was composed as a 
breakfast meal (total energy 450 kcal) and provided 33.3% of 
calories from fat (16.7 g), 51.4% from carbohydrates (57.8 g) 
and 15.3% from protein (17.2 g). The test meal contained more 
fat than a typical Japanese breakfast (20-25%) but comparable 
energy content (median: 423 kcal).

Lean mass, fat mass, and bone mineral mass for arms, 
legs, trunk and the total body were quantified by whole-body 
DXA (Hologic QDR-2000, software version 7.20D, Waltham, 
MA) as previously reported [19]. The leg region included the 
entire hip, thigh and leg. General adiposity was assessed us-
ing height-adjusted and weight-adjusted body fat. The former, 
fat mass index (FMI), was calculated as body fat mass in kg 
divided by height in meter squared and the latter, percent body 
fat, was calculated as body fat mass in kg divided by body 
weight in kg × 100. Abdominal fat accumulation was assessed 
by the ratio of trunk to leg fat [23].

Statistical analysis

Data were presented as mean ± SD unless otherwise stated. 
Due to deviation from normal distribution, HOMA-IR and 
hsCRP were logarithmically transformed for analyses. Young 
women were divided into four groups based on the relationship 
between PBG and FPG. Group A included two women whose 
PBG returned to levels below FPG at 30 min. Groups B (n = 
15) and C (n = 11) included women whose PBG returned to 
levels below FPG at 60 and 120 min, respectively and group D 
included seven women whose PBG never fell below FPG. The 
association of continuous variables with groups A through D 
and P values for trend were derived using Jonckheeree-Terp-
stra test. In categorical data analysis, Cochran-Armitage trend 
analysis was used. ANOVA and then Bonferroni’s multiple 
comparison procedures were used when appropriate. A two-
tailed P < 0.05 was considered statistically significant. All cal-
culations were performed with SPSS system 15.0 (SPSS Inc., 
Chicago, IL, USA).

Results

As previously reported [8, 18], participants were normal 
weight, normoglycemic, normolipidemic and insulin-sensitive 
as demonstrated by mean HOMA-IR < 1.0 (Table 1). Birth 
weight < 2,500 g and positive family history of diabetes were 
reported in 6.3% (2/32) and 32.3% (10/32), respectively.

There was no difference in BMI, waist circumference, 
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FMI, percentage body fat, trunk/leg fat ratio, serum adiponec-
tin, leptin and hsCRP among the four groups (Table 1). Al-
though FPG, fasting insulin and hence HOMA-IR did not dif-
fer, fasting FFA was lower in groups A and B versus C and D 
(Figs. 1, 2 and Table 2). However, the difference in Adipo-IR, 

which showed a pattern similar to fasting FFA, was not signifi-
cant (Table 2). There was also no difference in birth weight, 
the percentage of athletes and that of women with positive 
family history of diabetes (Table 1).

Despite clearly separated glucose and FFA concentration 

Table 1.  Anthropometric, Laboratory and Clinical Characteristics of the Four Study Groups Based on the Time (30, 60 and 120 Min 
or Never) That the Plasma Glucose (PG) Concentration During the OGTT Declined Below the Fasting PG Concentration

Group
A B C D

* #
n = 2 n = 15 n = 11 n = 7

BMI (kg/m2) 23.3 ± 6.2 22.3 ± 2.4 21.3 ± 2.3 21.3 ± 1.5 0.34 0.67
FMI (kg/m2) 7.40 ± 5.61 6.14 ± 2.06 5.22 ± 1.58 5.42 ± 1.32 0.44 0.70
Waist circumeference (cm) 76.1 ± 10.0 74.1 ± 7.0 74.4 ± 6.3 71.4 ± 4.2 0.60 0.72
Percentage body fat (%) 30.0 ± 16.7 27.4 ± 6.7 24.5 ± 5.5 25.8 ± 6.0 0.37 0.63
Trunk/leg fat ratio 0.96 ± 0.03 1.27 ± 0.25 1.19 ± 0.32 1.24 ± 0.16 0.64 0.42
Cholesterol (mg/dL) 205 ± 8 182 ± 23 173 ± 22 172 ± 22 0.10 0.25
Triglycerides (mg/dL) 59 ± 20 58 ± 16 52 ± 21 52 ± 22 0.26 0.85
HDL cholesterol (mg/dL) 83 ± 11 76 ± 12 72 ± 12 68 ± 10 0.13 0.33
Apolipoprotein A1 (mg/dL) 165 ± 15 164 ± 15 157 ± 15 151 ± 11 0.02 0.24
Apolipoprotein B (mg/dL) 79 ± 1 67 ± 13 65 ± 17 64 ± 11 0.27 0.59
Leptin (ng/mL) 10.1 ± 5.4 8.3 ± 5.2 5.0 ± 2.0 6.5 ± 4.1 0.10 0.19
Adiponectin (µg/mL) 17.1 ± 5.7 10.2 ± 3.9 12.0 ± 5.5 10.5 ± 2.7 0.92 0.20
hsCRP (µg/dL) 13 ± 6 62 ± 128 28 ± 47 30 ± 55 0.14 0.74
Athletes (n, %) 1, 50 8, 53.3 4, 36.4 4, 57.1 0.62 0.80
Positive family history (n, %) 0/2, 0.0 6/13, 46.2 3/9, 33.3 1/7, 14.3 0.37 0.37
Birth weight (g) 3,355 ± 78 3,090 ± 397 3,252 ± 452 2,960 ± 529 0.38 0.80

Data are expressed as mean ± SD. *P values by Jonckheeree-Terpstra trend test. #P values by ANOVA. FMI: fat mass index; hsCRP: high-sensitivity 
C-reactive protein.

Figure 1. Mean plasma glucose, insulin and free fatty acid (FFA) concentrations based on the time (30, 60 and 120 min or never: 
groups A through D) that the plasma glucose concentration during the meal test declined below the fasting plasma glucose con-
centration. *: the difference is significant at P < 0.05 or less by ANOVA and Bonferroni’s multiple comparison procedure: 30-min 
glucose, A versus C and D; 60-min glucose and fasting FFA, A and B versus C and D; 120-min glucose, A, B and C versus D; 
30-min FFA, A versus C. Group A: blue lines; B: green lines; C: yellow lines; D: red lines.
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curves after meal ingestion (Fig. 1 and Table 2), post-breakfast 
insulinemia among the four groups were similar. As summa-
rized in Figure 2, not only fasting FFA and AUCffa but also 
AUCg were the lowest in group A, increased linearly from 
group B to C, and plateaued in group D whereas AUCi did 
not differ. Incremental changes in Δglucose30 (Fig. 3) from 
groups A through D were quite similar to those in fasting FFA 
and AUCffa, whereas Δinsulin30 did not differ among four 
groups. Although not depicted in Figure 3 because of negative 
values, MIR might be the highest in group A, and decreased 
from group B to C and D.

There was a trend towards a decrease in apoAI from group 
A through group D (Fig. 3 and Table 1), although serum con-
centrations of HDL cholesterol, triglyceride and apoB did not 
differ (Table 1).

Discussion

The main finding of the present study is that even in healthy, 
normal weight Japanese women in early adult life, progressive 
increases in fasting FFA and AUCffa were associated not only 
with progressive increases in muscle insulin resistance but also 
with progressives decreases in MIR. These associations were 
not related to general and central adiposity (FMI and trunk/
leg fat ratio, respectively), birth weight, serum concentrations 

of adiponectin and hsCRP, family history of diabetes and the 
presence of endurance training. It is noteworthy that these 
findings were observed in a young, normal weight population 
in which confounding factors are so scarce [8, 18, 19].

Although FFA is well known to be a key factor in the de-
velopment of insulin resistance in obese subjects [10], there 
are limited data in non-obese humans on the association be-
tween normal variations in FFA levels and pancreatic β-cell 
function. Elevated fasting FFA was associated with deteriora-
tion of acute insulin response determined using intravenous 
GTT in Pima Indians with IGT but not NGT [24]. In the San 
Antonio Metabolism study, the progressive decline in insulin 
secretion in individuals with NGT is associated with a pro-
gressive increase in fasting FFA and Adipo-IR [25]. Because 
fasting FFA represents only a short period of time during each 
day, other time points, such as postprandial FFA, may be more 
relevant. In the present study, normal variations in postprandial 
FFA assessed by AUCffa as well as fasting FFA levels were as-
sociated with differences in insulin secretion and insulin resist-
ance in young healthy non-obese women with normal glucose 
tolerance. The current results may be consistent with prospec-
tive studies that showed a significant association between the 
fasting plasma FFA concentration or Adipo-IR and incidence 
of type 2 diabetes [25, 26]. Failure to detect statistical signifi-
cance in Adipo-IR may be due to small sample size in the pre-
sent study.

Figure 2. Fasting free fatty acids (FFAs), areas under the concentration curves of glucose, insulin and FFA (Glucose-AUC, 
Insulin-AUC and FFA-AUC, respectively) in groups A through D. Group A: blue columns; B: green columns; C: yellow columns; 
D: red columns. Data are expressed as mean ± SD. P values for trend derived using Jonckheeree-Terpstra test were shown.
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An increase in AUCg from groups A through D in the 
presence of comparable AUCi may suggest increased muscle 
insulin resistance from groups A through D. This may be in 
line with the previous observations in the general population 
[6, 7] that those whose post-load PG returned to FPG more 
slowly had a lower glucose-induced insulin secretion and 
increased muscle insulin resistance as compared with those 
whose postload PG returned to FPG more quickly.

People with NGT whose postload PG returned to FPG 
more slowly had greater BMI, waist circumference, serum tri-
glycerides, FPG and serum insulin, and lower HDL cholesterol 
compared with people whose postload PG returned to baseline 
more quickly [6]. Although young normal weight Japanese 
women did not have anthropometric and metabolic character-
istics of insulin resistance, they had decreased apoAI, a ma-
jor apolipoprotein of HDL, which has been shown to increase 
glucose-stimulated insulin secretion and insulin-independent 
peripheral tissue glucose uptake, leading to increased heart and 
skeletal muscle glucose disposal [27].

An increase in AUCg during a standardized meal test was 
not related to serum concentrations of adiponectin, leptin and 

hsCRP, birth weight, the percentage of athletes and that of 
women with positive family history of diabetes.

This study has several strengths, including a homogene-
ous study population with scarce confounding factors, and 
accurate and reliable measures of body composition by dual 
energy X-ray absorptiometry (DXA). The main limitation of 
our study is small sample size. DXA does not allow sepa-
rate quantification of visceral fat and subcutaneous fat in the 
trunk. However, the association of trunk fat with HOMA-
insulin resistance was comparable to that of visceral adipose 
tissue accumulation by computed tomography [28]. The 
cross-sectional design of the present study complicates the 
drawing of causal inferences, and a single measurement of 
biochemical variables may be susceptible to short-term vari-
ation, which would bias the results toward the null. We used 
several surrogates in the present study, which may be less 
accurate.

Conclusions

Table 2.  Responses of Glucose, Insulin and Free Fatty Acids to a Standardized Test Meal of the Four Study Groups Based on the 
Time (30, 60 and 120 Min or Never) That the Plasma Glucose (PG) Concentration During the OGTT Declined Below the Fasting PG 
Concentration

Group
A B C D

* #
n = 2 n = 15 n = 11 n = 7

Fasting PG (mg/dL) 86 ± 8 85 ± 5 83 ± 4 82 ± 4 0.174 0.532
30-min PG (mg/dL) 80 ± 11 103 ± 14 111 ± 13 111 ± 9 0.019 0.017 b, c
60-min PG (mg/dL) 61 ± 12 71 ± 10 101 ± 11 95 ± 16 0.000 0.000 b, c, d, e
120-min PG (mg/dL) 63 ± 2 72 ± 8 70 ± 8 90 ± 5 0.002 0.000 c, e, f
Fasting insulin (µU/mL) 2.0 ± 1.9 4.4 ± 2.6 3.2 ± 1.2 3.3 ± 1.2 0.639 0.480
30-min insulin (µU/mL) 38 ± 20 40 ± 21 26 ± 13 29 ± 16 0.101 0.230
60-min insulin (µU/mL) 17 ± 9 28 ± 19 32 ± 16 22 ± 14 0.564 0.531
120-min insulin (µU/mL) 8 ± 3 14 ± 9 10 ± 7 15 ± 9 0.693 0.552
Δglucose30 (mg/dL) -6 ± 4 19 ± 16 28 ± 12 28 ± 7 0.007 0.009 b, c
Δinsulin30 (µU/mL) 36 ± 22 35 ± 19 22 ± 12 26 ± 15 0.098 0.239
HOMA-IR 0.4 ± 0.4 0.9 ± 0.6 0.7 ± 0.2 0.7 ± 0.2 0.616 0.430
MIR - 4.2 ± 4.4 1.0 ± 0.6 0.9 ± 0.4 0.030 0.031 d
Glucose-AUC 138 ± 16 162 ± 13 187 ± 9 192 ± 14 0.000 0.000 b, c, d, e
Insulin-AUC 36 ± 18 49 ± 27 43 ± 21 40 ± 21 0.638 0.779
Adipo-IR 0.53 ± 0.56 1.66 ± 0.98 1.85 ± 1.11 1.90 ± 0.76 0.111 0.343
Fasting FFA (mEq/L) 0.26 ± 0.04 0.39 ± 0.13 0.55 ± 0.16 0.57 ± 0.09 0.000 0.002 b, c, d, e
30-min FFA (mEq/L) 0.18 ± 0.03 0.32 ± 0.11 0.40 ± 0.10 0.39 ± 0.07 0.008 0.022 b
60-min FFA (mEq/L) 0.17 ± 0.05 0.23 ± 0.09 0.25 ± 0.06 0.23 ± 0.03 0.267 0.437
120-min FFA (mEq/L) 0.23 ± 0.11 0.23 ± 0.06 0.23 ± 0.07 0.22 ± 0.03 0.749 0.980
FFA-AUC 0.39 ± 0.10 0.55 ± 0.15 0.64 ± 0.08 0.62 ± 0.08 0.031 0.033

Data are expressed as mean ± SD. PG: plasma glucose; Δglucose30 and Δinsulin30: the increment in PG and serum insulin during the first 30 min 
of the meal test; HOMA-IR: homeostasis model assessment of insulin resistance; MIR: meal-induced insulin response; AUC: the area under the 
concentration curve; Adipo-IR: adipose insulin resistance; FFA: free fatty acid. *P values by Jonckheeree-Terpstra trend test. #P values by ANOVA. 
a, b and c: group A versus B, C and D, respectively; d and e: group B versus C and D, respectively; f: group C versus D by Bonferroni’s multiple 
comparison procedures.



Articles © The authors   |   Journal compilation © J Clin Med Res and Elmer Press Inc™   |   www.jocmr.org 827

Takeuchi et al J Clin Med Res. 2018;10(11):822-829

Young women whose PBG returned to FPG more slowly had 
higher fasting and post-breakfast FFA, greater muscle insu-
lin resistance and lower MIR compared with young women 
whose PBG returned to baseline more quickly. These associa-
tions were not related to general and abdominal adiposity, adi-
ponectin and inflammation.
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columns; D: red columns. Data are expressed as mean ± SD. P values for trend derived using Jonckheeree-Terpstra test were 
shown.



Articles © The authors   |   Journal compilation © J Clin Med Res and Elmer Press Inc™   |   www.jocmr.org828

FFA, Insulin Resistance and Insulin Secretion J Clin Med Res. 2018;10(11):822-829

breakfast glucose; PG: plasma glucose
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